This paper proposes a supervised version of a learning algorithm for a constructive neuro-immune network. The proposed methodology is developed by taking ideas from the immune system and learning vector quantization. ...
详细信息
This paper proposes a supervised version of a learning algorithm for a constructive neuro-immune network. The proposed methodology is developed by taking ideas from the immune system and learning vector quantization. The resulting classification algorithm is characterized by high-performance, similar to the ones produced by alternative methods in the literature, and parsimonious solutions, with a much smaller set of prototypes per class when compared with the other approaches. The number of prototypes is automatically defined by the convergence criterion. The algorithm requires a single user-defined parameter for training, associated with the convergence criterion, and the computational cost is sufficiently reduced to support applications involving large data sets.
暂无评论