咨询与建议

限定检索结果

文献类型

  • 303 篇 期刊文献
  • 88 篇 会议

馆藏范围

  • 391 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 236 篇 工学
    • 124 篇 计算机科学与技术...
    • 44 篇 软件工程
    • 39 篇 生物工程
    • 36 篇 电气工程
    • 30 篇 生物医学工程(可授...
    • 20 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 14 篇 信息与通信工程
    • 9 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 仪器科学与技术
    • 5 篇 土木工程
  • 196 篇 理学
    • 102 篇 生物学
    • 30 篇 数学
    • 30 篇 化学
    • 25 篇 物理学
    • 22 篇 统计学(可授理学、...
    • 12 篇 地球物理学
    • 6 篇 天文学
  • 103 篇 医学
    • 53 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
    • 10 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 28 篇 农学
    • 13 篇 作物学
  • 22 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
  • 12 篇 教育学
    • 8 篇 心理学(可授教育学...
  • 7 篇 法学
    • 5 篇 社会学
  • 5 篇 经济学
  • 1 篇 哲学

主题

  • 43 篇 machine learning
  • 19 篇 deep learning
  • 12 篇 artificial intel...
  • 8 篇 drug discovery
  • 7 篇 classification
  • 5 篇 covid-19
  • 5 篇 support vector m...
  • 5 篇 schizophrenia
  • 5 篇 breast cancer
  • 5 篇 diagnosis
  • 5 篇 predictive model...
  • 5 篇 feature extracti...
  • 5 篇 gene expression
  • 5 篇 training
  • 4 篇 learning systems
  • 4 篇 neurons
  • 4 篇 cancer
  • 4 篇 galaxies
  • 4 篇 image segmentati...
  • 4 篇 kernel methods

机构

  • 21 篇 carnegie mellon ...
  • 8 篇 carnegie mellon ...
  • 7 篇 univ bonn lamarr...
  • 7 篇 center for machi...
  • 7 篇 carnegie mellon ...
  • 6 篇 carnegie mellon ...
  • 6 篇 harvard mit prog...
  • 6 篇 carnegie mellon ...
  • 6 篇 univ new south w...
  • 6 篇 princeton univ c...
  • 6 篇 harvard univ wys...
  • 6 篇 ai for science i...
  • 5 篇 univ sharjah sha...
  • 5 篇 amity univ amity...
  • 5 篇 lab crestview ra...
  • 5 篇 imperial coll lo...
  • 5 篇 peking univ ctr ...
  • 5 篇 publ hlth englan...
  • 5 篇 univ pittsburgh ...
  • 5 篇 univ tehran med ...

作者

  • 23 篇 bajorath juergen
  • 21 篇 alinejad-rokny h...
  • 10 篇 weinan e.
  • 8 篇 shoeibi afshin
  • 8 篇 smola alexander ...
  • 8 篇 smola alex j.
  • 8 篇 collins james j.
  • 7 篇 kim min seo
  • 7 篇 beheshti amin
  • 7 篇 alizadehsani roo...
  • 6 篇 gupta sapna
  • 6 篇 goleij pouya
  • 6 篇 halwani rabih
  • 6 篇 dandona rakhi
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 le quoc v.
  • 6 篇 xing eric p.
  • 6 篇 murphy robert f.
  • 6 篇 kim ji hoon

语言

  • 352 篇 英文
  • 39 篇 其他
检索条件"机构=Program in Machine Learning"
391 条 记 录,以下是191-200 订阅
排序:
Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time  35
Deep inference of latent dynamics with spatio-temporal super...
收藏 引用
35th Annual Conference on Neural Information Processing Systems (NeurIPS)
作者: Zhu, Feng Sedler, Andrew R. Grier, Harrison A. Ahad, Nauman Davenport, Mark A. Kaufman, Matthew T. Giovannucci, Andrea Pandarinath, Chethan Emory Univ Neurosci Grad Program Atlanta GA 30322 USA Georgia Tech Ctr Machine Learning Atlanta GA 30332 USA Univ Chicago Computat Neurosci Grad Program Chicago IL 60637 USA Georgia Tech Sch Elect & Comp Engn Atlanta GA USA Univ Chicago Dept Organismal Biol & Anat Chicago IL 60637 USA Univ Chicago Neurosci Inst Chicago IL 60637 USA UNC Chapel Hill Joint Dept Biomed Engn Chapel Hill NC USA NC State Univ Chapel Hill NC USA UNC Chapel Hill Neurosci Ctr Chapel Hill NC USA UNC Closed Loop Engn Adv Rehabil CLEAR NC State Chapel Hill NC USA Emory Univ Coulter Dept Biomed Engn Atlanta GA 30322 USA Georgia Tech Atlanta GA 30332 USA Emory Univ Dept Neurosurg Atlanta GA 30322 USA
Modern neural interfaces allow access to the activity of up to a million neurons within brain circuits. However, bandwidth limits often create a trade-off between greater spatial sampling (more channels or pixels) and... 详细信息
来源: 评论
Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time
arXiv
收藏 引用
arXiv 2021年
作者: Zhu, Feng Sedler, Andrew R. Grier, Harrison A. Ahad, Nauman Davenport, Mark A. Kaufman, Matthew T. Giovannucci, Andrea Pandarinath, Chethan Neuroscience Graduate Program Emory University Center for Machine Learning Georgia Tech Computational Neuroscience Graduate Program The University of Chicago School of Electrical and Computer Engineering Georgia Tech Dept. of Organismal Biology and Anatomy The University of Chicago Neuroscience Institute The University of Chicago Joint Dept. of Biomedical Engineering UNC Chapel Hill NC State University UNC Chapel Hill Neuroscience Center Coulter Dept. of Biomedical Engineering Emory University Georgia Tech Dept. of Neurosurgery Emory University
Modern neural interfaces allow access to the activity of up to a million neurons within brain circuits. However, bandwidth limits often create a trade-off between greater spatial sampling (more channels or pixels) and... 详细信息
来源: 评论
Beyond Ultra-diffuse Galaxies. I. Mass-Size Outliers among the Satellites of Milky Way Analogs
收藏 引用
ASTROPHYSICAL JOURNAL 2023年 第1期955卷 1-1页
作者: Li, Jiaxuan Greene, Jenny E. Greco, Johnny P. Huang, Song Melchior, Peter Beaton, Rachael Casey, Kirsten Danieli, Shany Goulding, Andy Joseph, Remy Kado-Fong, Erin Kim, Ji Hoon Macarthur, Lauren A. Princeton Univ Dept Astrophys Sci 4 Ivy Lane Princeton NJ 08544 USA Ohio State Univ Ctr Cosmol & Astro Particle Phys CCAPP Columbus OH 43210 USA Tsinghua Univ Dept Astron Beijing 100084 Peoples R China Tsinghua Univ Tsinghua Ctr Astrophys Beijing 100084 Peoples R China Princeton Univ Ctr Stat & Machine Learning Princeton NJ 08544 USA Stockholm Univ Oskar Klein Ctr Cosmoparticle Phys Dept Phys SE-10691 Stockholm Sweden Seoul Natl Univ Dept Phys & Astron Astron Program 1 Gwanak Ro Seoul 08826 South Korea Seoul Natl Univ SNU Astron Res Ctr 1 Gwanak Ro Seoul 08826 South Korea
Large diffuse galaxies are hard to find, but understanding the environments where they live, their numbers, and ultimately their origins, is of intense interest and importance for galaxy formation and evolution. Using...
来源: 评论
Making transport more robust and interpretable by moving data through a small number of anchor points
arXiv
收藏 引用
arXiv 2020年
作者: Lin, Chi-Heng Azabou, Mehdi Dyer, Eva L. Department of Electrical and Computer Engineering Georgia Tech AtlantaGA United States Machine Learning Program Georgia Tech AtlantaGA United States Coulter Department of Biomedical Engineering Georgia Tech & Emory University AtlantaGA United States
Optimal transport (OT) is a widely used technique for distribution alignment, with applications throughout the machine learning, graphics, and vision communities. Without any additional structural assumptions on trans... 详细信息
来源: 评论
Genome-Wide CRISPR-Cas9 Screening Identifies a Synergy between Hypomethylating Agents and Sumoylation Blockade in Myelodysplastic Syndromes and Acute Myeloid Leukemia
收藏 引用
BLOOD 2022年 第Sup1期140卷 220-221页
作者: Truong, Peter Shen, Sylvie Joshi, Swapna Afrasiabi, Ali Zhong, Ling Raftery, Mark J. Larsson, Jonas Lock, Richard B. Walkley, Carl R. Rokny, Hamid Alinejad Thoms, Julie A. I. Jolly, Christopher J. Pimanda, John E. Univ New South Wales Sch Clin Med Sydney NSW Australia Univ New South Wales Grad Sch Biomed Engn BioMed Machine Learning Lab Sydney NSW Australia Univ New South Wales Bioanalyt Mass Spectrometry Facil Sydney NSW Australia Lund Univ Div Mol Med & Gene Therapy Lund Stem Cell Ctr Lund Sweden Univ New South Wales Sch Womens & Childrens Hlth Sydney NSW Australia Univ New South Wales Childrens Canc Inst Sydney NSW Australia Univ New South Wales Ctr Childhood Canc Res Sydney NSW Australia Univ Melbourne St Vincents Inst Melbourne Vic Australia Univ Melbourne Med Melbourne Vic Australia Univ New South Wales UNSW Data Sci Hub Sydney NSW Australia Macquarie Univ Hlth Data Analyt Program AI Enabled Proc Res Ctr Sydney NSW Australia Univ New South Wales Sch Med Sci Randwick NSW Australia Prince Wales Hosp Dept Haematol Sydney NSW Australia
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Reliable Radiologic Skeletal Muscle Area Assessment – A Biomarker for Cancer Cachexia Diagnosis
arXiv
收藏 引用
arXiv 2025年
作者: Ahmed, Sabeen Parker, Nathan Park, Margaret Jeong, Daniel Peres, Lauren Davis, Evan W. Permuth, Jennifer B. Siegel, Erin Schabath, Matthew B. Yilmaz, Yasin Rasool, Ghulam Department of Machine Learning H. Lee Moffitt Cancer Center and Research Institute TampaFL United States Department of Health Outcomes and Behavior H. Lee Moffitt Cancer Center and Research Institute TampaFL United States Department of GI Oncology H. Lee Moffitt Cancer Center and Research Institute TampaFL United States Diagnostic Imaging and Interventional Radiology H. Lee Moffitt Cancer Center and Research Institute TampaFL United States Department of Cancer Epidemiology H. Lee Moffitt Cancer Center and Research Institute TampaFL United States Department of Biostatistics and Bioinformatics H. Lee Moffitt Cancer Center and Research Institute TampaFL United States Department of Electrical Engineering University of South Florida TampaFL United States Epidemiology and Genomics Research Program National Cancer Institute NIH United States
Cancer cachexia is a common metabolic disorder characterized by severe muscle atrophy which is associated with poor prognosis and quality of life. Monitoring skeletal muscle area (SMA) longitudinally through computed ... 详细信息
来源: 评论
Cross-population coupling of neural activity based on Gaussian process current source densities
arXiv
收藏 引用
arXiv 2021年
作者: Klein, Natalie Siegle, Joshua H. Teichert, Tobias Kass, Robert E. Department of Statistics and Data Science Carnegie Mellon University PittsburghPA United States Machine Learning Department Carnegie Mellon University PittsburghPA United States MindScope Program Allen Institute SeattleWA United States Department of Psychiatry University of Pittsburgh PittsburghPA United States Department of Bioengineering University of Pittsburgh PittsburghPA United States Neuroscience Institute Carnegie Mellon University PittsburghPA United States
Because local field potentials (LFPs) arise from multiple sources in different spatial locations, they do not easily reveal coordinated activity across neural populations on a trial-to-trial basis. As we show here, ho... 详细信息
来源: 评论
Deep learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound
收藏 引用
IEEE TRANSACTIONS ON MEDICAL IMAGING 2020年 第8期39卷 2676-2687页
作者: Roy, Subhankar Menapace, Willi Oei, Sebastiaan Luijten, Ben Fini, Enrico Saltori, Cristiano Huijben, Iris Chennakeshava, Nishith Mento, Federico Sentelli, Alessandro Peschiera, Emanuele Trevisan, Riccardo Maschietto, Giovanni Torri, Elena Inchingolo, Riccardo Smargiassi, Andrea Soldati, Gino Rota, Paolo Passerini, Andrea van Sloun, Ruud J. G. Ricci, Elisa Demi, Libertario Univ Trento Dept Informat Engn & Comp Sci Deep & Struct Machine Learning Res Program I-38123 Trento Italy Fdn Bruno Kessler I-38123 Trento Italy Eindhoven Univ Technol Dept Elect Engn NL-5612 Eindhoven Netherlands Univ Trento Dept Informat Engn & Comp Sci Ultrasound Lab Trento ULTRa I-38123 Trento Italy BresciaMEd I-25128 Brescia Italy Fdn Policlin Univ Agostino Gemelli IRCCS Dept Cardiovasc & Thorac Sci I-00168 Rome Italy Valle Serchio Gen Hosp Diagnost & Intervent Ultrasound Unit I-55100 Lucca Italy Fdn Policlin Univ Agostino Gemelli IRCCS Dept Med & Surg Sci Rome Italy
Deep learning (DL) has proved successful in medical imaging and, in the wake of the recent COVID-19 pandemic, some works have started to investigate DL-based solutions for the assisted diagnosis of lung diseases. Whil... 详细信息
来源: 评论
Global Land-Cover Mapping With Weak Supervision: Outcome of the 2020 IEEE GRSS Data Fusion Contest
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2021年 14卷 3185-3199页
作者: Robinson, Caleb Malkin, Kolya Jojic, Nebojsa Chen, Huijun Qin, Rongjun Xiao, Changlin Schmitt, Michael Ghamisi, Pedram Haensch, Ronny Yokoya, Naoto Georgia Inst Technol Sch Computat Sci & Engn Atlanta GA 30332 USA Microsoft Res AI Good Res Lab Redmond WA 98052 USA Yale Univ Dept Math New Haven CT 06520 USA Microsoft Res Redmond WA 98052 USA Ohio State Univ Dept Civil Environm & Geodet Engn Columbus OH 43210 USA Ohio State Univ Environm Sci Grad Program Columbus OH 43210 USA Ohio State Univ Dept Civil Environm & Geodet Engn Dept Elect & Comp Engn Columbus OH 43210 USA Ohio State Univ Translat Data Analyt Inst Columbus OH 43210 USA Munich Univ Appl Sci Dept Geoinformat D-80335 Munich Germany Helmholtz Zentrum Dresden Rossendorf Machine Learning Grp Helmholtz Inst Freiberg Resource Technol D-09599 Freiberg Germany German Aerosp Ctr D-82234 Wessling Germany Univ Tokyo Dept Complex Sci & Engn Chiba 2778561 Japan RIKEN Ctr Adv Intelligence Project Tokyo 1030027 Japan
This article presents the scientific outcomes of the 2020 Data Fusion Contest (DFC2020) organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The 2020 C... 详细信息
来源: 评论