咨询与建议

限定检索结果

文献类型

  • 303 篇 期刊文献
  • 88 篇 会议

馆藏范围

  • 391 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 236 篇 工学
    • 124 篇 计算机科学与技术...
    • 44 篇 软件工程
    • 39 篇 生物工程
    • 36 篇 电气工程
    • 30 篇 生物医学工程(可授...
    • 20 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 14 篇 信息与通信工程
    • 9 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 仪器科学与技术
    • 5 篇 土木工程
  • 196 篇 理学
    • 102 篇 生物学
    • 30 篇 数学
    • 30 篇 化学
    • 25 篇 物理学
    • 22 篇 统计学(可授理学、...
    • 12 篇 地球物理学
    • 6 篇 天文学
  • 103 篇 医学
    • 53 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
    • 10 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 28 篇 农学
    • 13 篇 作物学
  • 22 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
  • 12 篇 教育学
    • 8 篇 心理学(可授教育学...
  • 7 篇 法学
    • 5 篇 社会学
  • 5 篇 经济学
  • 1 篇 哲学

主题

  • 43 篇 machine learning
  • 19 篇 deep learning
  • 12 篇 artificial intel...
  • 8 篇 drug discovery
  • 7 篇 classification
  • 5 篇 covid-19
  • 5 篇 support vector m...
  • 5 篇 schizophrenia
  • 5 篇 breast cancer
  • 5 篇 diagnosis
  • 5 篇 predictive model...
  • 5 篇 feature extracti...
  • 5 篇 gene expression
  • 5 篇 training
  • 4 篇 learning systems
  • 4 篇 neurons
  • 4 篇 cancer
  • 4 篇 galaxies
  • 4 篇 image segmentati...
  • 4 篇 kernel methods

机构

  • 21 篇 carnegie mellon ...
  • 8 篇 carnegie mellon ...
  • 7 篇 univ bonn lamarr...
  • 7 篇 center for machi...
  • 7 篇 carnegie mellon ...
  • 6 篇 carnegie mellon ...
  • 6 篇 harvard mit prog...
  • 6 篇 carnegie mellon ...
  • 6 篇 univ new south w...
  • 6 篇 princeton univ c...
  • 6 篇 harvard univ wys...
  • 6 篇 ai for science i...
  • 5 篇 univ sharjah sha...
  • 5 篇 amity univ amity...
  • 5 篇 lab crestview ra...
  • 5 篇 imperial coll lo...
  • 5 篇 peking univ ctr ...
  • 5 篇 publ hlth englan...
  • 5 篇 univ pittsburgh ...
  • 5 篇 univ tehran med ...

作者

  • 23 篇 bajorath juergen
  • 21 篇 alinejad-rokny h...
  • 10 篇 weinan e.
  • 8 篇 shoeibi afshin
  • 8 篇 smola alexander ...
  • 8 篇 smola alex j.
  • 8 篇 collins james j.
  • 7 篇 kim min seo
  • 7 篇 beheshti amin
  • 7 篇 alizadehsani roo...
  • 6 篇 gupta sapna
  • 6 篇 goleij pouya
  • 6 篇 halwani rabih
  • 6 篇 dandona rakhi
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 le quoc v.
  • 6 篇 xing eric p.
  • 6 篇 murphy robert f.
  • 6 篇 kim ji hoon

语言

  • 352 篇 英文
  • 39 篇 其他
检索条件"机构=Program in Machine Learning"
391 条 记 录,以下是351-360 订阅
排序:
AAAI 2008 workshop reports
AAAI 2008 workshop reports
收藏 引用
作者: Anand, Sarabjot Singh Bunescu, Razvan Carvcdho, Vitor Chomicki, Jan Conitzer, Vincent Cox, Michael T. Dignum, Virginia Dodds, Zachary Dredze, Mark Furcy, David Gabrilovich, Evgeniy Göker, Mehmet H. Guesgen, Hans Hirsh, Haym Jannach, Dietmar Junker, Ulrich Ketter, Wolfgang Kobsa, Alfred Koenig, Sven Lau, Tessa Lewis, Lundy Matson, Eric Metzler, Ted Mihalcea, Rada Mobasher, Bamshad Pineau, Joelle Poupart, Pascal Raja, Anita Ruml, Wheeler Sadeh, Norman Shani, Guy Shapiro, Daniel Smith, Trey Taylor, Matthew E. Wagstaff, Kiri Walsh, William Zhou, Rong Department of Computer Science University of Warwick United Kingdom School of Electrical Engineering and Computer Science Ohio University United States Microsoft Live Labs United States computer science and engineering University at Buffalo United States Computer science and economics Duke University United States Intelligent Computing group of BBN Technologies Utrecht University Netherlands Department of Computer science Harvey Mudd College United States University of Pennsylvania United States University of Wisconsin United States Yahoo Research PricewaterhouseCoopers Center for Advanced Research United States Department of Computer science School of Engineering and Advanced Technology Massey University New Zealand Departent of Computer science Rutgers University United States Department of Computer Science Dortmund University of Technology. Germany ILOG Rotterdam School of Management Erasmus University Netherlands Donald Bren School of Information and Computer Sciences University of California Irvine United States Depatrment of Computer science University of Southern California United States IBM Almaden Research Center United States Department of Computer Information Technology Southern New Hampshire University United States Computer and Information Technology Program College of Technology Purdue University United States Hughes Program for Religion and Science Dialogue Oklahoma City University United States Department of Computer Science and Engineering University of North Texas United States School of Computing DePaul University United States Department of Computer Science McGill University Canada School of Computer Science University of Waterloo Canada Department of Software and Information Systems University of North Carolina Charlotte United States University of New Hampshire United States Microsoft Research Institute for the Study of Learning and Expertise Applied Reactivity Inc. United States NASA Ames Research Center Carnegie Mellon University West
AAAI was pleased to present the AAAI-08 Workshop program, held Sunday and Monday, July 13-14, in Chicago, Illinois, USA. The program included the following 15 workshops: Advancements in POMDP Solvers;AI Education Work... 详细信息
来源: 评论
An evaluation of adaptive filtering in the context of realistic task-based information exploration
收藏 引用
INFORMATION PROCESSING & MANAGEMENT 2008年 第2期44卷 511-533页
作者: He, Daqing Brusilovsky, Peter Ahn, Jaewook Grady, Jonathan Farzan, Rosta Peng, Yefei Yang, Yiming Rogati, Monica Univ Pittsburgh Sch Informat Sci Pittsburgh PA 15256 USA Univ Pittsburgh Intelligence Syst Program Pittsburgh PA 15260 USA Carnegie Mellon Univ Sch Comp Sci Machine Learning Dept Language Technol Inst Pittsburgh PA 15213 USA Carnegie Mellon Univ Sch Comp Sci Dept Comp Sci Pittsburgh PA 15213 USA
Exploratory search increasingly becomes an important research topic. Our interests focus on task-based information exploration, a specific type of exploratory search performed by a range of professional users, such as... 详细信息
来源: 评论
learning graph matching
Learning graph matching
收藏 引用
11th IEEE International Conference on Computer Vision
作者: Caetano, Tiberio S. Cheng, Li Le, Quoc V. Smola, Alex J. NICTA Stat Machine Learning Program Canberra ACT 0200 Australia
As a fundamental problem in pattern recognition, graph matching has found a variety of applications in the field of computer vision. In graph matching, patterns are modeled as graphs and pattern recognition amounts to... 详细信息
来源: 评论
Reachability analysis for uncertain SSPs
收藏 引用
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS 2007年 第4期16卷 725-749页
作者: Buffet, Olivier Australian Natl Univ Natl ICT Australia RSISE Stat Machine Learning Program Canberra ACT Australia
Stochastic Shortest Path problems (SSPs) can be efficiently dealt with by the Real-Time Dynamic programming algorithm (RTDP). Yet, RTDP requires that a goal state is always reachable. This article presents an algorith... 详细信息
来源: 评论
Fast iterative kernel principal component analysis
收藏 引用
JOURNAL OF machine learning RESEARCH 2007年 第8期8卷 1893-1918页
作者: Guenter, Simon Schraudolph, Nicol N. Vishwanathan, S. V. N. Australian Natl Univ Res Sch Informat Sci & Engn Canberra ACT 2601 Australia Natl ICT Australia Stat Machine Learning Program Canberra ACT Australia
We develop gain adaptation methods that improve convergence of the kernel Hebbian algorithm (KHA) for iterative kernel PCA (Kim et al., 2005). KHA has a scalar gain parameter which is either held constant or decreased... 详细信息
来源: 评论
Reachability analysis for uncertain SSPs
Reachability analysis for uncertain SSPs
收藏 引用
17th International Conference on Tools with Artificial Intelligence
作者: Buffet, Olivier Australian Natl Univ Natl ICT Australia RSISE Stat Machine Learning Program Canberra ACT Australia
Stochastic Shortest Path problems (SSPs) can be efficiently dealt with by the Real-Time Dynamic programming algorithm (RTDP). Yet, RTDP requires that a goal state is always reachable. This article presents an algorith... 详细信息
来源: 评论
Binet-cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2007年 第1期73卷 95-119页
作者: Vishwanathan, S. V. N. Smola, Alexander J. Vidal, Rene Natl ICT Australia Stat Machine Learning Program Canberra ACT 0200 Australia Johns Hopkins Univ Dept Biomed Engn Ctr Imaging Sci Baltimore MD 21218 USA
We propose a family of kernels based on the Binet-Cauchy theorem, and its extension to Fredholm operators. Our derivation provides a unifying framework for all kernels on dynamical systems currently used in machine le... 详细信息
来源: 评论
Using two-stage conditional word frequency models to model word burstiness and motivating TF-IDF
Using two-stage conditional word frequency models to model w...
收藏 引用
11th International Conference on Artificial Intelligence and Statistics, AISTATS 2007
作者: Sunehag, Peter Statistical Machine Learning Program National ICT Australia Locked bag 8001 ACT 2601 Australia
Several authors have recently studied the problem of creating exchangeable models for natural languages that exhibit word burstiness. Word burstiness means that a word that has appeared once in a text should be more l...
来源: 评论
learning to rank with nonsmooth cost functions
收藏 引用
20th Annual Conference on Neural Information Processing Systems, NIPS 2006
作者: Burges, Christopher J.C. Ragno, Robert Viet Le, Quoc Microsoft Research One Microsoft Way Redmond WA 98052 United States Statistical Machine Learning Program NICTA ACT 2601 Australia
The quality measures used in information retrieval are particularly difficult to optimize directly, since they depend on the model scores only through the sorted order of the documents returned for a given query. Thus... 详细信息
来源: 评论
Graph kernels for disease outcome prediction from protein-protein interaction networks
Graph kernels for disease outcome prediction from protein-pr...
收藏 引用
13th Pacific Symposium on Biocomputing (PSB)
作者: Borgwardt, Karsten M. Kriegel, Hans-Peter Vishwanathan, S. V. N. Schraudolph, Nicol N. Ludwig Maximilians Univ Munchen Inst Comp Sci Oettingenstr 67 D-80538 Munich Germany Natl ICT Australia Stat Machine Learning Program Canberra ACT 0200 Australia
It is widely believed that comparing discrepancies in the protein-protein interaction (PPI) networks of individuals will become an important tool in understanding and preventing diseases. Currently PPI networks for in... 详细信息
来源: 评论