咨询与建议

限定检索结果

文献类型

  • 302 篇 期刊文献
  • 88 篇 会议

馆藏范围

  • 390 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 236 篇 工学
    • 124 篇 计算机科学与技术...
    • 44 篇 软件工程
    • 40 篇 生物工程
    • 35 篇 电气工程
    • 30 篇 生物医学工程(可授...
    • 20 篇 控制科学与工程
    • 16 篇 化学工程与技术
    • 14 篇 信息与通信工程
    • 9 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 仪器科学与技术
    • 5 篇 土木工程
  • 196 篇 理学
    • 102 篇 生物学
    • 30 篇 数学
    • 30 篇 化学
    • 25 篇 物理学
    • 22 篇 统计学(可授理学、...
    • 12 篇 地球物理学
    • 6 篇 天文学
  • 98 篇 医学
    • 51 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
    • 10 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 29 篇 农学
    • 14 篇 作物学
  • 22 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
  • 12 篇 教育学
    • 8 篇 心理学(可授教育学...
  • 5 篇 经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 1 篇 哲学

主题

  • 39 篇 machine learning
  • 18 篇 deep learning
  • 12 篇 artificial intel...
  • 8 篇 drug discovery
  • 7 篇 classification
  • 5 篇 covid-19
  • 5 篇 neurons
  • 5 篇 support vector m...
  • 5 篇 schizophrenia
  • 5 篇 diagnosis
  • 5 篇 predictive model...
  • 5 篇 feature extracti...
  • 5 篇 gene expression
  • 5 篇 training
  • 4 篇 learning systems
  • 4 篇 galaxies
  • 4 篇 image segmentati...
  • 4 篇 kernel methods
  • 4 篇 breast cancer
  • 4 篇 data mining

机构

  • 21 篇 carnegie mellon ...
  • 8 篇 carnegie mellon ...
  • 7 篇 univ bonn lamarr...
  • 7 篇 center for machi...
  • 7 篇 carnegie mellon ...
  • 6 篇 carnegie mellon ...
  • 6 篇 harvard mit prog...
  • 6 篇 carnegie mellon ...
  • 6 篇 univ new south w...
  • 6 篇 princeton univ c...
  • 6 篇 harvard univ wys...
  • 6 篇 ai for science i...
  • 5 篇 univ sharjah sha...
  • 5 篇 amity univ amity...
  • 5 篇 lab crestview ra...
  • 5 篇 imperial coll lo...
  • 5 篇 peking univ ctr ...
  • 5 篇 publ hlth englan...
  • 5 篇 univ pittsburgh ...
  • 5 篇 univ tehran med ...

作者

  • 23 篇 bajorath juergen
  • 22 篇 alinejad-rokny h...
  • 10 篇 weinan e.
  • 8 篇 shoeibi afshin
  • 8 篇 smola alexander ...
  • 8 篇 smola alex j.
  • 8 篇 collins james j.
  • 7 篇 beheshti amin
  • 7 篇 alizadehsani roo...
  • 6 篇 kim min seo
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 le quoc v.
  • 6 篇 xing eric p.
  • 6 篇 murphy robert f.
  • 6 篇 kim ji hoon
  • 5 篇 debela sisay abe...
  • 5 篇 gupta sapna
  • 5 篇 santric-milicevi...
  • 5 篇 momtazmanesh sar...

语言

  • 359 篇 英文
  • 28 篇 其他
检索条件"机构=Program in Machine Learning"
390 条 记 录,以下是371-380 订阅
排序:
Step size adaptation in reproducing kernel Hilbert space
收藏 引用
JOURNAL OF machine learning RESEARCH 2006年 7卷 1107-1133页
作者: Vishwanathan, S. V. N. Schraudolph, Nicol N. Smola, Alex J. Natl ICT Australia Stat Machine Learning Program Canberra ACT 2601 Australia Australian Natl Univ Res Sch Informat Sci & Engn Canberra ACT 0200 Australia
This paper presents an online support vector machine (SVM) that uses the stochastic meta-descent (SMD) algorithm to adapt its step size automatically. We formulate the online learning problem as a stochastic gradient ... 详细信息
来源: 评论
Newton-like methods for nonparametric independent component analysis
收藏 引用
13th International Conference on Neural Informational Processing
作者: Shen, Hao Hueper, Knut Smola, Alexander J. Natl ICT Australia Syst Engn & Complex Syst Res Program Canberra ACT 2612 Australia Natl ICT Australia Stat Machine Learning Res Program Canberra ACT 2612 Australia Australian Natl Univ Res Sch Informat Sci & Engn Dept Informat Engn Canberra ACT 0200 Australia Australian Natl Univ Res Sch Informat Sci & Engn Comp Sci Lab Canberra ACT 0200 Australia
The performance of ICA algorithms significantly depends on the choice of the contrast function and the optimisation algorithm used in obtaining the demixing matrix. In this paper we focus on the standard linear nonpar... 详细信息
来源: 评论
Hyperparameter learning for graph based semi-supervised learning algorithms  06
Hyperparameter learning for graph based semi-supervised lear...
收藏 引用
Proceedings of the 20th International Conference on Neural Information Processing Systems
作者: Xinhua Zhang Wee Sun Lee Statistical Machine Learning Program National ICT Australia Canberra Australia and CSL RSISE ANU Canberra Australia Department of Computer Science National University of Singapore Singapore
Semi-supervised learning algorithms have been successfully applied in many applications with scarce labeled data, by utilizing the unlabeled data. One important category is graph based semi-supervised learning algorit...
来源: 评论
Nonparametric quantile estimation
收藏 引用
JOURNAL OF machine learning RESEARCH 2006年 7卷 1231-1264页
作者: Takeuchi, Ichiro Le, Quoc V. Sears, Timothy D. Smola, Alexander J. Mie Univ Grad Sch Engn Div Comp Sci Tsu Mie 5148507 Japan Australian Natl Univ RSISE Canberra ACT 0200 Australia Natl ICT Australia Stat Machine Learning Program Canberra ACT 0200 Australia
In regression, the desired estimate of y vertical bar x is not always given by a conditional mean, although this is most common. Sometimes one wants to obtain a good estimate that satisfies the property that a proport... 详细信息
来源: 评论
Second order cone programming approaches for handling missing and uncertain data
收藏 引用
JOURNAL OF machine learning RESEARCH 2006年 7卷 1283-1314页
作者: Shivaswamy, Pannagadatta K. Bhattacharyya, Chiranjib Smola, Alexander J. Columbia Univ New York NY 10027 USA Indian Inst Sci Dept Comp Sci & Automat Bangalore 560012 Karnataka India Natl ICT Australia Stat Machine Learning Program Canberra ACT 0200 Australia Australian Natl Univ Canberra ACT 0200 Australia
We propose a novel second order cone programming formulation for designing robust classifiers which can handle uncertainty in observations. Similar formulations are also derived for designing regression functions whic... 详细信息
来源: 评论
Solving factored MDPs with hybrid state and action variables
收藏 引用
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH 2006年 第1期27卷 153-201页
作者: Kveton, Branislav Hauskrecht, Milos Guestrin, Carlos Univ Pittsburgh Intelligent Syst Program Pittsburgh PA 15260 USA Univ Pittsburgh Dept Comp Sci Pittsburgh PA 15260 USA Carnegie Mellon Univ Machine Learning Dept Pittsburgh PA 15213 USA Carnegie Mellon Univ Dept Comp Sci Pittsburgh PA 15213 USA
Efficient representations and solutions for large decision problems with continuous and discrete variables are among the most important challenges faced by the designers of automated decision support systems. In this ... 详细信息
来源: 评论
Binet-cauchy kernels
Binet-cauchy kernels
收藏 引用
18th Annual Conference on Neural Information Processing Systems, NIPS 2004
作者: Vishwanathan, S.V.N. Smola, Alexander J. National ICT Australia Machine Learning Program Canberra ACT 0200 Australia
We propose a family of kernels based on the Binet-Cauchy theorem and its extension to Fredholm operators. This includes as special cases all currently known kernels derived from the behavioral framework, diffusion pro...
来源: 评论
Learnability of probabilistic automata via oracles
Learnability of probabilistic automata via oracles
收藏 引用
16th International Conference on Algorithmic learning Theory, ALT 2005
作者: Guttman, Omri Vishwanathan, S.V.N. Williamson, Robert C. Statistical Machine Learning Program National ICT Australia Australian National University Canberra ACT Australia
Efficient learnability using the state merging algorithm is known for a subclass of probabilistic automata termed μ-distinguishable. In this paper, we prove that state merging algorithms can be extended to efficientl... 详细信息
来源: 评论
Large-scale multiclass transduction
Large-scale multiclass transduction
收藏 引用
2005 Annual Conference on Neural Information Processing Systems, NIPS 2005
作者: Gärtner, Thomas Le, Quoc V. Burton, Simon Smola, Alex J. Vishwanathan, Vishy Fraunhofer AIS.KD 53754 Sankt Augustin Germany Statistical Machine Learning Program NICTA ANU Canberra ACT Australia
We present a method for performing transductive inference on very large datasets. Our algorithm is based on multiclass Gaussian processes and is effective whenever the multiplication of the kernel matrix or its invers... 详细信息
来源: 评论
Kernel methods for missing variables
Kernel methods for missing variables
收藏 引用
10th International Workshop on Artificial Intelligence and Statistics, AISTATS 2005
作者: Smola, Alex J. Vishwanathan, S.V.N. Hofmann, Thomas Statistical Machine Learning Program NICTA ANU Canberra ACT 0200 Australia Department of Computer Science Brown University Providence RI United States
We present methods for dealing with missing variables in the context of Gaussian Processes and Support Vector machines. This solves an important problem which has largely been ignored by kernel methods: How to systema... 详细信息
来源: 评论