咨询与建议

限定检索结果

文献类型

  • 302 篇 期刊文献
  • 88 篇 会议

馆藏范围

  • 390 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 236 篇 工学
    • 124 篇 计算机科学与技术...
    • 44 篇 软件工程
    • 40 篇 生物工程
    • 35 篇 电气工程
    • 30 篇 生物医学工程(可授...
    • 20 篇 控制科学与工程
    • 16 篇 化学工程与技术
    • 14 篇 信息与通信工程
    • 9 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 仪器科学与技术
    • 5 篇 土木工程
  • 196 篇 理学
    • 102 篇 生物学
    • 30 篇 数学
    • 30 篇 化学
    • 25 篇 物理学
    • 22 篇 统计学(可授理学、...
    • 12 篇 地球物理学
    • 6 篇 天文学
  • 98 篇 医学
    • 51 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
    • 10 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 29 篇 农学
    • 14 篇 作物学
  • 22 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
  • 12 篇 教育学
    • 8 篇 心理学(可授教育学...
  • 5 篇 经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 1 篇 哲学

主题

  • 39 篇 machine learning
  • 18 篇 deep learning
  • 12 篇 artificial intel...
  • 8 篇 drug discovery
  • 7 篇 classification
  • 5 篇 covid-19
  • 5 篇 neurons
  • 5 篇 support vector m...
  • 5 篇 schizophrenia
  • 5 篇 diagnosis
  • 5 篇 predictive model...
  • 5 篇 feature extracti...
  • 5 篇 gene expression
  • 5 篇 training
  • 4 篇 learning systems
  • 4 篇 galaxies
  • 4 篇 image segmentati...
  • 4 篇 kernel methods
  • 4 篇 breast cancer
  • 4 篇 data mining

机构

  • 21 篇 carnegie mellon ...
  • 8 篇 carnegie mellon ...
  • 7 篇 univ bonn lamarr...
  • 7 篇 center for machi...
  • 7 篇 carnegie mellon ...
  • 6 篇 carnegie mellon ...
  • 6 篇 harvard mit prog...
  • 6 篇 carnegie mellon ...
  • 6 篇 univ new south w...
  • 6 篇 princeton univ c...
  • 6 篇 harvard univ wys...
  • 6 篇 ai for science i...
  • 5 篇 univ sharjah sha...
  • 5 篇 amity univ amity...
  • 5 篇 lab crestview ra...
  • 5 篇 imperial coll lo...
  • 5 篇 peking univ ctr ...
  • 5 篇 publ hlth englan...
  • 5 篇 univ pittsburgh ...
  • 5 篇 univ tehran med ...

作者

  • 23 篇 bajorath juergen
  • 22 篇 alinejad-rokny h...
  • 10 篇 weinan e.
  • 8 篇 shoeibi afshin
  • 8 篇 smola alexander ...
  • 8 篇 smola alex j.
  • 8 篇 collins james j.
  • 7 篇 beheshti amin
  • 7 篇 alizadehsani roo...
  • 6 篇 kim min seo
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 le quoc v.
  • 6 篇 xing eric p.
  • 6 篇 murphy robert f.
  • 6 篇 kim ji hoon
  • 5 篇 debela sisay abe...
  • 5 篇 gupta sapna
  • 5 篇 santric-milicevi...
  • 5 篇 momtazmanesh sar...

语言

  • 359 篇 英文
  • 28 篇 其他
检索条件"机构=Program in Machine Learning"
390 条 记 录,以下是381-390 订阅
排序:
Leaving the span
收藏 引用
18th Annual Conference on learning Theory (COLT 2005)
作者: Warmuth, MK Vishwanathan, SVN Univ Calif Santa Cruz Dept Comp Sci Santa Cruz CA 95064 USA Natl ICT Australia Machine Learning Program Canberra ACT 0200 Australia
We discuss a simple sparse linear problem that is hard to learn with any algorithm that uses a linear combination of the training instances as its weight vector. The hardness holds even if we allow the learner to embe... 详细信息
来源: 评论
Step size-adapted online support vector learning
Step size-adapted online support vector learning
收藏 引用
8th International Symposium on Signal Processing and its Applications, ISSPA 2005
作者: Karatzoglou, Alexandros Vishwanathan, S.V.N. Schraudolph, Nicol N. Smola, Alex J. Department of Statistics Technische Universität Wien Wiedner Hauptstraße 8-10 Austria National ICT Australia Statistical Machine Learning Program Australian National University Canberra
We present an online Support Vector machine (SVM) that uses Stochastic Meta-Descent (SMD) to adapt its step size automatically. We formulate the online learning problem as a stochastic gradient descent in Reproducing ... 详细信息
来源: 评论
Heteroscedastic Gaussian process regression  05
Heteroscedastic Gaussian process regression
收藏 引用
ICML 2005: 22nd International Conference on machine learning
作者: Le, Quoc V. Smola, Alex J. Canu, Stéphane RSISE Australian National University ACT 0200 Australia Statistical Machine Learning Program National ICT Australia ACT 0200 Australia PSI - FRE CNRS 2645 INSA de Rouen France
This paper presents an algorithm to estimate simultaneously both mean and variance of a non parametric regression problem. The key point is that we are able to estimate variance locally unlike standard Gaussian Proces... 详细信息
来源: 评论
Large-scale multiclass transduction  05
Large-scale multiclass transduction
收藏 引用
Proceedings of the 19th International Conference on Neural Information Processing Systems
作者: Thomas Gärtner Quoc V. Le Simon Burton Alex J. Smola Vishy Vishwanathan Fraunhofer Sankt Augustin Statistical Machine Learning Program NICTA and ANU Canberra ACT
We present a method for performing transductive inference on very large datasets. Our algorithm is based on multiclass Gaussian processes and is effective whenever the multiplication of the kernel matrix or its invers...
来源: 评论
A second order cone programming formulation for classifying missing data
A second order cone programming formulation for classifying ...
收藏 引用
18th Annual Conference on Neural Information Processing Systems, NIPS 2004
作者: Bhattacharyya, Chiranjib Pannagadatta, K.S. Smola, Alexander J. Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012 India Department of Electrical Engineering Indian Institute of Science Bangalore 560 012 India Machine Learning Program National ICT Australia and ANU Canberra ACT 0200 Australia
We propose a convex optimization based strategy to deal with uncertainty in the observations of a classification problem. We assume that instead of a sample (xi;yi) a distribution over (xi;y i) is specified. In partic... 详细信息
来源: 评论
Step size-adapted online support vector learning
Step size-adapted online support vector learning
收藏 引用
International Symposium on Signal Processing and Its Applications (ISSPA)
作者: A. Karatzoglou S.V.N. Vishwanathan N.N. Schraudolph A.J. Smola Department of Statistics Technische Universität Wien Austria RSISE Statistical Machine Learning Program National ICT Australia Australian National University Canberra Australia
来源: 评论
Binet-Cauchy kernels  04
Binet-Cauchy kernels
收藏 引用
Proceedings of the 18th International Conference on Neural Information Processing Systems
作者: S. V. N. Vishwanathan Alexander J. Smola National ICT Australia Machine Learning Program Canberra ACT Australia
We propose a family of kernels based on the Binet-Cauchy theorem and its extension to Fredholm operators. This includes as special cases all currently known kernels derived from the behavioral framework, diffusion pro...
来源: 评论
A Second order Cone programming formulation for classifying missing data  04
A Second order Cone Programming formulation for classifying ...
收藏 引用
Proceedings of the 17th International Conference on Neural Information Processing Systems
作者: Chiranjib Bhattacharyya K. S. Pannagadatta Alexander J. Smola Department of Computer Science and Automation Indian Institute of Science Bangalore India Department of Electrical Engineering Indian Institute of Science Bangalore India Machine Learning Program National ICT Australia and ANU Canberra ACT Australia
We propose a convex optimization based strategy to deal with uncertainty in the observations of a classification problem. We assume that instead of a sample (xi, yi) a distribution over (xi, yi) is specified. In parti...
来源: 评论
SimpleSVM
SimpleSVM
收藏 引用
Proceedings, Twentieth International Conference on machine learning
作者: Vishwanathan, S.V.N. Smola, Alexander J. Murty, M. Narasimha Machine Learning Program National ICT for Australia Canberra ACT 0200 Australia Machine Learning Group RSISE Australian National University Canberra ACT 0200 Australia Dept. of Comp. Sci. Indian Institute of Science Bangalore 560012 India
We present a fast iterative support vector training algorithm for a large variety of different formulations. It works by incrementally changing a candidate support vector set using a greedy approach, until the support... 详细信息
来源: 评论
Empirical performance comparison of selective and constructive induction (Reprinted from Proceedings of the International Joint Conferences on Artificial Intelligence)
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 1996年 第6期9卷 627-637页
作者: Szczepanik, W Arciszewski, T Wnek, J GEORGE MASON UNIV CIVIL ENVIRONM & INFRASTRUCT PROGRAMSCH INFORMAT TECHNOL & ENGNFAIRFAXVA 22030 GEORGE MASON UNIV MACHINE LEARNING & INFERENCE LABFAIRFAXVA 22030
The paper provides the results of a performance comparison study of Two symbolic learning programs, both based on the AQ15c learning algorithm. The first program uses a single representation space, while the second on... 详细信息
来源: 评论