咨询与建议

限定检索结果

文献类型

  • 302 篇 期刊文献
  • 88 篇 会议

馆藏范围

  • 390 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 236 篇 工学
    • 124 篇 计算机科学与技术...
    • 44 篇 软件工程
    • 40 篇 生物工程
    • 35 篇 电气工程
    • 30 篇 生物医学工程(可授...
    • 20 篇 控制科学与工程
    • 16 篇 化学工程与技术
    • 14 篇 信息与通信工程
    • 9 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 仪器科学与技术
    • 5 篇 土木工程
  • 196 篇 理学
    • 102 篇 生物学
    • 30 篇 数学
    • 30 篇 化学
    • 25 篇 物理学
    • 22 篇 统计学(可授理学、...
    • 12 篇 地球物理学
    • 6 篇 天文学
  • 98 篇 医学
    • 51 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
    • 10 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 29 篇 农学
    • 14 篇 作物学
  • 22 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
  • 12 篇 教育学
    • 8 篇 心理学(可授教育学...
  • 5 篇 经济学
  • 5 篇 法学
    • 5 篇 社会学
  • 1 篇 哲学

主题

  • 39 篇 machine learning
  • 18 篇 deep learning
  • 12 篇 artificial intel...
  • 8 篇 drug discovery
  • 7 篇 classification
  • 5 篇 covid-19
  • 5 篇 neurons
  • 5 篇 support vector m...
  • 5 篇 schizophrenia
  • 5 篇 diagnosis
  • 5 篇 predictive model...
  • 5 篇 feature extracti...
  • 5 篇 gene expression
  • 5 篇 training
  • 4 篇 learning systems
  • 4 篇 galaxies
  • 4 篇 image segmentati...
  • 4 篇 kernel methods
  • 4 篇 breast cancer
  • 4 篇 data mining

机构

  • 21 篇 carnegie mellon ...
  • 8 篇 carnegie mellon ...
  • 7 篇 univ bonn lamarr...
  • 7 篇 center for machi...
  • 7 篇 carnegie mellon ...
  • 6 篇 carnegie mellon ...
  • 6 篇 harvard mit prog...
  • 6 篇 carnegie mellon ...
  • 6 篇 univ new south w...
  • 6 篇 princeton univ c...
  • 6 篇 harvard univ wys...
  • 6 篇 ai for science i...
  • 5 篇 univ sharjah sha...
  • 5 篇 amity univ amity...
  • 5 篇 lab crestview ra...
  • 5 篇 imperial coll lo...
  • 5 篇 peking univ ctr ...
  • 5 篇 publ hlth englan...
  • 5 篇 univ pittsburgh ...
  • 5 篇 univ tehran med ...

作者

  • 23 篇 bajorath juergen
  • 22 篇 alinejad-rokny h...
  • 10 篇 weinan e.
  • 8 篇 shoeibi afshin
  • 8 篇 smola alexander ...
  • 8 篇 smola alex j.
  • 8 篇 collins james j.
  • 7 篇 beheshti amin
  • 7 篇 alizadehsani roo...
  • 6 篇 kim min seo
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 le quoc v.
  • 6 篇 xing eric p.
  • 6 篇 murphy robert f.
  • 6 篇 kim ji hoon
  • 5 篇 debela sisay abe...
  • 5 篇 gupta sapna
  • 5 篇 santric-milicevi...
  • 5 篇 momtazmanesh sar...

语言

  • 359 篇 英文
  • 28 篇 其他
检索条件"机构=Program in Machine Learning"
390 条 记 录,以下是31-40 订阅
排序:
Protocol to calculate and compare exact Shapley values for different kernels in support vector machine models using binary features
收藏 引用
STAR PROTOCOLS 2024年 第4期5卷 103450页
作者: Roth, Jannik P. Bajorath, Juergen Rheinische Friedrich Wilhelms Univ Dept Life Sci Informat & Data Sci LIMES Program Unit Chem Biol & Med Chem B IT Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany Lamarr Inst Machine Learning & Artificial Intellig Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany
The Shapley value formalism from cooperative game theory was adapted to explain predictions of machine learning models. Here, we present a protocol to calculate and compare exact Shapley values for support vector mach... 详细信息
来源: 评论
Coarse-Graining Conformational Dynamics with Multidimensional Generalized Langevin Equation: How, When, and Why
收藏 引用
JOURNAL OF CHEMICAL THEORY AND COMPUTATION 2024年 第18期20卷 7708-7715页
作者: Xie, Pinchen Weinan, E. Princeton Univ Program Appl & Computat Math Princeton NJ 08544 USA Lawrence Berkeley Natl Lab Appl Math & Computat Res Div Berkeley CA 94720 USA AI Sci Inst Beijing 100080 Peoples R China Peking Univ Ctr Machine Learning Res Beijing 100871 Peoples R China Peking Univ Sch Math Sci Beijing 100084 Peoples R China
A data-driven ab initio generalized Langevin equation (AIGLE) approach is developed to learn and simulate high-dimensional, heterogeneous, coarse-grained (CG) conformational dynamics. Constrained by the fluctuation-di...
来源: 评论
Transforming molecular cores, substituents, and combinations into structurally diverse compounds using chemical language models
收藏 引用
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY 2025年 291卷 117615页
作者: Piazza, Lisa Srinivasan, Sanjana Tuccinardi, Tiziano Bajorath, Juergen Rhein Friedrich Wilhelms Univ Dept Life Sci Informat & Data Sci LIMES Program Unit Chem Biol & Med Chem B IT Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany Univ Pisa Dept Pharm Via Bonanno 6 I-56126 Pisa Italy Rhein Friedrich Wilhelms Univ Bonn Lamarr Inst Machine Learning & Artificial Intellig Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany
Transformer-based chemical language models (CLMs) were derived to generate structurally and topologically diverse embeddings of core structure fragments, substituents, or core/substituent combinations in chemically pr... 详细信息
来源: 评论
Automatic Feature Engineering Using Self-Organizing Maps
Automatic Feature Engineering Using Self-Organizing Maps
收藏 引用
IEEE Latin American Conference on Computational Intelligence (LA-CCI)
作者: Rodrigues, Ericks da Silva Martins, Denis Mayr Lima de Lima Neto, Fernando Buarque Univ Pernambuco Comp Engn Program Recife PE Brazil Univ Munster ERCIS Machine Learning & Data Engn Munster Germany
Feature Engineering (FE) consists of generating new, better features to improve the results obtained by machine learning models. Very often, FE is performed in a series of trial-and-error steps conducted manually by d... 详细信息
来源: 评论
Context-dependent similarity analysis of analogue series for structure-activity relationship transfer based on a concept from natural language processing
收藏 引用
JOURNAL OF CHEMINFORMATICS 2025年 第1期17卷 1-14页
作者: Yoshimori, Atsushi Bajorath, Jurgen Inst Theoret Med Inc 26-1 Muraoka Higashi 2 chome Fujisawa Kanagawa 2510012 Japan Univ Bonn Dept Life Sci Informat & Data Sci LIMES Program Unit Chem Biol & Med Chem B IT Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany Univ Bonn Lamarr Inst Machine Learning & Artif Intelligence Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany
Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure-activity relationship (SAR) information. Pairs of active AS consisting of compounds with cor... 详细信息
来源: 评论
Self-Organizing Transformations for Automatic Feature Engineering
Self-Organizing Transformations for Automatic Feature Engine...
收藏 引用
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
作者: Rodrigues, Ericks da Silva Lima Martins, Denis Mayr de Lima Neto, Fernando Buarque Univ Pernambuco Comp Engn Program Recife PE Brazil Univ Munster ERCIS Machine Learning & Data Engn Muesnter Germany
Feature Engineering (FE) consists of generating new, better features to improve machine learning models. Very often, FE is performed in a series of trial-and-error steps conducted manually by data scientists. Moreover... 详细信息
来源: 评论
Generation of dual-target compounds using a transformer chemical language model
收藏 引用
CELL REPORTS PHYSICAL SCIENCE 2024年 第11期5卷
作者: Srinivasan, Sanjana Bajorath, Juergen Univ Bonn Dept Life Sci Informat & Data Sci B IT Friedrich-Hirzebruch-Allee 5-6 D-53115 Bonn Germany Univ Bonn Lamarr Inst Machine Learning & Artificial Intellig Friedrich-Hirzebruch-Allee 5-6 D-53115 Bonn Germany Univ Bonn Limes Inst Program Unit Chem Biol & Med Chem Friedrich-Hirzebruch-Allee 5-6 D-53115 Bonn Germany
Compounds with defined multi-target activity are candidates for the treatment of multi-factorial diseases. Such compounds are mostly discovered experimentally. Designing compounds with the desired activity against two... 详细信息
来源: 评论
MapView: Exploring Datasets via Unsupervised View Recommendation
MapView: Exploring Datasets via Unsupervised View Recommenda...
收藏 引用
IEEE Latin American Conference on Computational Intelligence (LA-CCI)
作者: Aires de Carvalho, Thiego Buenos Lima Martins, Denis Mayr de Lima Neto, Fernando Buarque Univ Pernambuco Comp Engn Program Recife PE Brazil Univ Munster ERCIS Machine Learning & Data Engn Muesnter Germany
Exploring large datasets in search for valuable insights requires time and sufficient technical knowledge. In order to alleviate this task, we propose and implemented a prototype of a data exploration tool. It is base... 详细信息
来源: 评论
machine learning models with distinct Shapley and interpretation for chemical compound predictions
收藏 引用
CELL REPORTS PHYSICAL SCIENCE 2024年 第8期5卷
作者: Roth, Jannik P. Bajorath, Juergen Univ Bonn Dept Life Sci Informat & Data Sci B IT Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany Univ Bonn Lamarr Inst Machine Learning & Artificial Intellig Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany Univ Bonn Limes Inst Program Unit Chem Biol & Med Chem Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany
Explaining black box predictions of machine learning (ML) models is a topical issue in artificial intelligence (AI) research. For the identification of features determining predictions, the Shapley value formalism ori... 详细信息
来源: 评论
Uncovering and tackling fundamental limitations of compound potency predictions using machine learning models
收藏 引用
CELL REPORTS PHYSICAL SCIENCE 2024年 第6期5卷
作者: Janela, Tiago Bajorath, Juergen Univ Bonn Dept Life Sci Informat & Data Sci B IT Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany Univ Bonn Lamarr Inst Machine Learning & Artificial Intellig Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany Univ Bonn Limes Inst Program Unit Chem Biol & Med Chem B IT Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany
Molecular property predictions play a central role in computer-aided drug discovery. Although a variety of physicochemical (e.g., solubility or chemical reactivity) or physiological properties (e.g., metabolic stabili... 详细信息
来源: 评论