We revisit the problem of tracking the state of a hybrid system capable of performing a bounded number of mode switches. In a previous paper we have addressed a version of the problem where we have assumed the existen...
详细信息
ISBN:
(纸本)9781617824012
We revisit the problem of tracking the state of a hybrid system capable of performing a bounded number of mode switches. In a previous paper we have addressed a version of the problem where we have assumed the existence of a deterministic, known hard bound on the number of mode transitions. In addition, it was assumed that the system can possess only two modes, e.g., the maneuvering and non-maneuvering regimes of a tracked target. In the present paper we relax both assumptions: we assume a soft, stochastic bound on the number of mode transitions, and altogether remove the restriction on the number of modes of the system (thus, e.g., the target can have multiple different maneuvering modes, in addition to the non-maneuvering one). While admitting an unlimited number of mode transitions, the soft bound renders that number finite with probability 1. In addition, similarly to the case where the number of transition was deterministically hard-bounded, the existence of the bound renders the mode switching mechanism non-Markov. Thus, the two formulations address similar, though not identical, problems, that cannot be solved by direct application of algorithms devised for hybrid systems having Markov mode switching mechanisms. The novel solution approach adopted herein is based on transforming the non-Markovian mode switching mechanism to an equivalent Markovian one, at the price of augmenting the mode definition, and increasing the dimension of the state space involved. A standard interacting multiple model (IMM) filter is then applied to the transformed (Markovian) problem in a straightforward manner. The performance of the new method is demonstrated via a simulation study comprising three examples, in which the new method is compared with 1) the filter for hard-bounded mode transitions, and 2) a standard IMM filter directly applied to the original problem. The study shows that even when working outside its operating envelope (e.g., when the number of mode switches is har
Two research communities, motor systems neuroscience and motor prosthetics, examine the relationship between neural activity in the motor cortex and movement. The former community aims to understand how the brain cont...
详细信息
Two research communities, motor systems neuroscience and motor prosthetics, examine the relationship between neural activity in the motor cortex and movement. The former community aims to understand how the brain controls and generates movement; the latter community focuses on how to decode neural activity as control signals for a prosthetic cursor or limb. Both have made progress toward understanding the relationship between neural activity in the motor cortex and behavior. However, these findings are tested using animal models in an environment that constrains behavior to simple, limited movements. These experiments show that, in constrained settings, simple reaching motions can be decoded from small populations of spiking neurons. It is unclear whether these findings hold for more complex, full-body behaviors in unconstrained settings. Here we present the results of freely-moving behavioral experiments from a monkey with simultaneous intracortical recording. We investigated neural firing rates while the monkey performed various tasks such as walking on a treadmill, reaching for food, and sitting idly. We show that even in such an unconstrained and varied context, neural firing rates are well tuned to behavior, supporting findings of basic neuroscience. Further, we demonstrate that the various behavioral tasks can be reliably classified with over 95% accuracy, illustrating the viability of decoding techniques despite significant variation and environmental distractions associated with unconstrained behavior. Such encouraging results hint at potential utility of the freely-moving experimental paradigm.
A two-point correlation function provides a crucial yet an incomplete characterization of a microstructure because distinctly different microstructures may have the same correlation function. In an earlier Letter [Gom...
详细信息
A two-point correlation function provides a crucial yet an incomplete characterization of a microstructure because distinctly different microstructures may have the same correlation function. In an earlier Letter [Gommes, Jiao, and Torquato, Phys. Rev. Lett. 108, 080601 (2012)], we addressed the microstructural degeneracy question: What is the number of microstructures compatible with a specified correlation function? We computed this degeneracy, i.e., configurational entropy, in the framework of reconstruction methods, which enabled us to map the problem to the determination of ground-state degeneracies. Here, we provide a more comprehensive presentation of the methodology and analyses, as well as additional results. Since the configuration space of a reconstruction problem is a hypercube on which a Hamming distance is defined, we can calculate analytically the energy profile of any reconstruction problem, corresponding to the average energy of all microstructures at a given Hamming distance from a ground state. The steepness of the energy profile is a measure of the roughness of the energy landscape associated with the reconstruction problem, which can be used as a proxy for the ground-state degeneracy. The relationship between this roughness metric and the ground-state degeneracy is calibrated using a Monte Carlo algorithm for determining the ground-state degeneracy of a variety of microstructures, including realizations of hard disks and Poisson point processes at various densities as well as those with known degeneracies (e.g., single disks of various sizes and a particular crystalline microstructure). We show that our results can be expressed in terms of the information content of the two-point correlation functions. From this perspective, the a priori condition for a reconstruction to be accurate is that the information content, expressed in bits, should be comparable to the number of pixels in the unknown microstructure. We provide a formula to calculate the
Constructing high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener mo...
详细信息
Constructing high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for π/2 and π pulses and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses has calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from π/2 and π pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, postfacto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.
We present filling as a type of spatial subdivision problem similar to covering and packing. Filling addresses the optimal placement of overlapping objects lying entirely inside an arbitrary shape so as to cover the m...
详细信息
We present filling as a type of spatial subdivision problem similar to covering and packing. Filling addresses the optimal placement of overlapping objects lying entirely inside an arbitrary shape so as to cover the most interior volume. In n-dimensional space, if the objects are polydisperse n-balls, we show that solutions correspond to sets of maximal n-balls. For polygons, we provide a heuristic for finding solutions of maximal disks. We consider the properties of ideal distributions of N disks as N→∞. We note an analogy with energy landscapes.
Cooperation and defection may be considered to be two extreme responses to a social dilemma. Yet the reality is much less clear-cut. Between the two extremes lies an interval of ambivalent choices, which may be captur...
详细信息
Cooperation and defection may be considered to be two extreme responses to a social dilemma. Yet the reality is much less clear-cut. Between the two extremes lies an interval of ambivalent choices, which may be captured theoretically by means of continuous strategies defining the extent of the contributions of each individual player to the common pool. If strategies are chosen from the unit interval, where 0 corresponds to pure defection and 1 corresponds to the maximal contribution, the question is what is the characteristic level of individual investments to the common pool that emerges if the evolution is guided by different benefit functions. Here we consider the steepness and the threshold as two parameters defining an array of generalized benefit functions, and we show that in a structured population there exist intermediate values of both at which the collective contributions are maximal. However, as the cost-to-benefit ratio of cooperation increases, the characteristic threshold decreases while the corresponding steepness increases. Our observations remain valid if more complex sigmoid functions are used, thus reenforcing the importance of carefully adjusted benefits for high levels of public cooperation.
Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. ...
详细信息
We have investigated excimer laser irradiation of 2000-Å-thin as-deposited Al films on SiO2. Microstructural analysis of the irradiated films conducted with AFM and EBSD techniques reveals that there exists a wid...
详细信息
We have investigated excimer laser irradiation of 2000-Å-thin as-deposited Al films on SiO2. Microstructural analysis of the irradiated films conducted with AFM and EBSD techniques reveals that there exists a wide energy density interval over which large equaxed grains with a strong (111) texture are obtained. Based on thermal, transformational, and microstructural considerations, we propose a heterogeneous nucleation model to account for the observed behaviors, and discuss the implication of the model on the phenomenon of heterogeneous nucleation of crystalline solids in condensed systems as regards the thermodynamic role played by the orientation of subcritical clusters.
Thin Si films on SiO2 that are completely melted by pulsed laser irradiation cool rapidly and eventually solidify via nucleation and growth of solids. It has been observed that a variety of solidified microstructures ...
详细信息
Thin Si films on SiO2 that are completely melted by pulsed laser irradiation cool rapidly and eventually solidify via nucleation and growth of solids. It has been observed that a variety of solidified microstructures can be obtained, depending primarily (but not exclusively) on the degree of supercooling achieved prior to the onset of nucleation. This paper focuses on investigating one particular and unusual polycrystalline microstructure that consists of “flowerlike” grains, the interiors of which can be described as being made up of two distinct regions: (1) an extremely defective core region consisting of fine-grained material, and (2) an outer region consisting of relatively defect-free crystal “petals” that radiate outwards. After considering the microstructural details and experimental behavior of the microstructure, we have formulated a growth-based physical model to account for the formation of the microstructure. The model is found to be also capable of accounting for other complex and unusual microstructures obtained via nucleation and growth in the complete melting regime.
暂无评论