Scaling properties of the field equation governing propagation of a thin flame front in a turbulent medium are discussed. It is shown that if the turbulent flame velocityuTcan be expressed through the turbulence inten...
Scaling properties of the field equation governing propagation of a thin flame front in a turbulent medium are discussed. It is shown that if the turbulent flame velocityuTcan be expressed through the turbulence intensityurmsand the laminar flame velocityu0asuT/u0∞ (urms/u0)x, then α → 1 in the scale invariant regime whenurms→ ∞.
The problem of propagation of turbulent premixed flame is analyzed using the field equation introduced recently by Kerstein, Ashurst and Williams (1987). The dynamic renormalization group method is applied to this equ...
The problem of propagation of turbulent premixed flame is analyzed using the field equation introduced recently by Kerstein, Ashurst and Williams (1987). The dynamic renormalization group method is applied to this equation and the formula for the turbulent flame velocity is derived in the lowest order in the ε-expansion. The formula, which does not include adjustable parameters, agrees well with experimental (Abdel-Gayed et al., 1984) and numerical (Ashurst & Barr 1983) results on flame propagation in high-Reynolds number turbulent media. Ways to design transport and large-eddy (sub-grid) models for simulation of combustion processes, based on the ideas developed in the present paper, are discussed.
The results of numerical simulations of random-force-driven Navier-Stokes turbulence designed to test predictions of the renormalization group theory of turbulence are presented. By specially choosing the random force...
详细信息
The boundary element (BE) technique is used to analyze the effect of defect structures upon desorption processes on two-dimensional chemically active surfaces. The standard BE algorithm for diffusion is modified to in...
The transverse behavior of a laser beam propagating through a bistable optical cavity is investigated analytically and numerically. Numerical experiments that study the (one‐dimensional) transverse structure of the s...
详细信息
The transverse behavior of a laser beam propagating through a bistable optical cavity is investigated analytically and numerically. Numerical experiments that study the (one‐dimensional) transverse structure of the steady state profile are described. Mathematical descriptions of (i) an infinite‐dimensional map that models the situation, (ii) the solitary waves that represent the transverse steady state structures, (iii) a projection formalism that reduces the infinite‐dimensional map to a finite‐dimensional one, and (iv) the theoreticalanalysis of this reduced map are presented in detail. The accuracy of this theoreticalanalysis is established by comparing its predictions to numerical observations.
Statistical properties of solutions of the random-force–driven Burgers equation are investigated by use of the dynamic renormalization group and direct numerical simulations. The agreement between computed and analyt...
Statistical properties of solutions of the random-force–driven Burgers equation are investigated by use of the dynamic renormalization group and direct numerical simulations. The agreement between computed and analytical results on both exponents and amplitudes of the correlation functions is good. It is shown that a small-scale noise dominates large-scale, long-time (k→0,ω→0) behavior of the system and, as a consequence, no microscopic system of interacting particles described by Burgers equation in the hydrodynamic limit (k→0,ω→0) exists.
The quantitative interpretation of the recent experiments on turbulent diffusivity in high‐Reynolds‐number Couette–Taylor flow by Tam and Swinney [Phys. Rev. A 36, 1374 (1987)], is presented.
The quantitative interpretation of the recent experiments on turbulent diffusivity in high‐Reynolds‐number Couette–Taylor flow by Tam and Swinney [Phys. Rev. A 36, 1374 (1987)], is presented.
The spread of AIDS by sexual contact is analyzed by a homogeneous mixing model. Using data for the epidemic in the U.S. homosexual population the infectivity of the virus is estimated. Behavioral responses to the epid...
详细信息
The spread of AIDS by sexual contact is analyzed by a homogeneous mixing model. Using data for the epidemic in the U.S. homosexual population the infectivity of the virus is estimated. Behavioral responses to the epidemic in the form of declining sexual interaction rates and/or infectivity of the virus are modelled. These analyses are used to explore the potential efficacy of measures for controlling the epidemic.
作者:
MCNICHOLS, RJDAVIS, CBRoger J. McNichols is a professor of industrial engineering at the University of Toledo (Department of Industrial Engineering
University of Toledo Toledo OH 43606). After receiving his Ph.D in industrial engineering from The Ohio State University he joined the faculty of Texas A and M University where he directed the Maintainability Engineering Graduate Program at Red River Army Depot. At UT he has served as associate dean of engineering and as chairman of the Systems engineering doctoral program. His research and consulting interests include reliability quality control manufacturing mathematical modeling and applied statistics. Charles B. Davis is an associate professor of mathematics at the University of Toledo (Department of Mathematics
University of Toledo Toledo OH 43606). After receiving his M.S. in mathematics and statistics and his Ph.D. in statistics from the University of New Mexico he joined the Mathematics Department at UT where he established the graduate program in statistics. His research and consulting interests include statistical modeling statistical computation simultaneous inference and data analysis.
Ground water monitoring presents interesting statistical challenges, including controlling the risk of entering compliance monitoring, incorporating all modes of inherent variability into the statistical model on whic...
Ground water monitoring presents interesting statistical challenges, including controlling the risk of entering compliance monitoring, incorporating all modes of inherent variability into the statistical model on which tests are based, and taming the detection limit problem, all while maintaining demonstrable sensitivity to real contamination. Some of these challenges exceed textbook statistics considerably, even when considered alone, and good solutions are scarce. When these challenges are combined, the task of developing good statistical procedures or good regulations can be formidable. This article presents a number of realities of ground water monitoring that should be considered when developing statistical procedures. Recommendations made for addressing these realities include the following: (1) the false positive rate should be controlled on a facility-wide basis, rather than per well or per parameter as required in the proposed regulation (40 CFR §264); (2) multiple comparisons with control procedures are preferable to analysis of variance (ANOVA) for controlling the overall false positive rate; (3) retests can be made an explicit part of the statistical procedure in order to increase power and decrease sensitivity to distribution shape assumptions; (4) commonly used simple methods of handling below detection limit data with parametric tests, including Cohen's procedure as implemented in the U.S. EPA's Technical Enforcement Guidance Document (TEGD), should probably be avoided; (5) the statistical properties of practical quantitation limits for non-naturally occurring compounds should be studied carefully; and (6) so long as the facility-wide false positive rate is controlled, better sensitivity to real contamination is obtained by monitoring fewer well-chosen parameters at a smaller number of well-chosen locations. An evaluation of the proposed revised §264 regulation with respect to these realities reveals that it seems to be a definite improvement over the
A three‐mode projection of the Navier–Stokes equations for nonlinear perturbations to an elliptical vortex is studied numerically. It is found that, as the Reynolds number increases, the perturbations undergo a sequ...
A three‐mode projection of the Navier–Stokes equations for nonlinear perturbations to an elliptical vortex is studied numerically. It is found that, as the Reynolds number increases, the perturbations undergo a sequence of period doublings leading to chaos according to the Feigenbaum scenario [J. Statis. Phys. 19, 25 (1978); Phys. Lett. 74 A, 375 (1979)].
暂无评论