咨询与建议

限定检索结果

文献类型

  • 898 篇 期刊文献
  • 126 篇 会议
  • 6 册 图书

馆藏范围

  • 1,030 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 834 篇 理学
    • 464 篇 物理学
    • 429 篇 数学
    • 189 篇 统计学(可授理学、...
    • 109 篇 化学
    • 103 篇 生物学
    • 76 篇 系统科学
    • 30 篇 地球物理学
    • 22 篇 天文学
  • 595 篇 工学
    • 206 篇 计算机科学与技术...
    • 156 篇 软件工程
    • 101 篇 材料科学与工程(可...
    • 100 篇 力学(可授工学、理...
    • 81 篇 控制科学与工程
    • 77 篇 电子科学与技术(可...
    • 76 篇 动力工程及工程热...
    • 75 篇 电气工程
    • 71 篇 信息与通信工程
    • 70 篇 生物工程
    • 68 篇 化学工程与技术
    • 58 篇 生物医学工程(可授...
    • 54 篇 光学工程
    • 25 篇 机械工程
    • 16 篇 仪器科学与技术
    • 14 篇 核科学与技术
  • 58 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 27 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 16 篇 医学
    • 14 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 15 篇 农学
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 10 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 20 篇 molecular dynami...
  • 18 篇 machine learning
  • 16 篇 stochastic syste...
  • 16 篇 density function...
  • 12 篇 inverse problems
  • 11 篇 eigenvalues and ...
  • 11 篇 microstructure
  • 10 篇 deep neural netw...
  • 10 篇 classical statis...
  • 9 篇 gravitational wa...
  • 9 篇 diffusion
  • 9 篇 artificial neura...
  • 8 篇 sphere packings
  • 8 篇 electronic struc...
  • 8 篇 spheres
  • 8 篇 mean square erro...
  • 7 篇 first-principles...
  • 7 篇 gradient methods
  • 7 篇 turbulence
  • 7 篇 mathematics

机构

  • 132 篇 program in appli...
  • 89 篇 program in appli...
  • 64 篇 department of ch...
  • 63 篇 department of ch...
  • 47 篇 department of ph...
  • 43 篇 program in appli...
  • 40 篇 program in appli...
  • 40 篇 department of ph...
  • 30 篇 beijing institut...
  • 27 篇 princeton instit...
  • 26 篇 program in appli...
  • 23 篇 program in appli...
  • 19 篇 department of ma...
  • 17 篇 applied mathemat...
  • 17 篇 princeton instit...
  • 16 篇 department of ch...
  • 16 篇 princeton center...
  • 15 篇 institute for pl...
  • 15 篇 department of ph...
  • 15 篇 department of ph...

作者

  • 79 篇 salvatore torqua...
  • 65 篇 weinan e.
  • 60 篇 torquato salvato...
  • 43 篇 zhang linfeng
  • 33 篇 singer amit
  • 28 篇 wang han
  • 28 篇 frank h. stillin...
  • 25 篇 s. torquato
  • 25 篇 jasra ajay
  • 24 篇 weinan e
  • 20 篇 car roberto
  • 18 篇 han jiequn
  • 17 篇 emily a. carter
  • 17 篇 bendory tamir
  • 17 篇 kim jaeuk
  • 16 篇 griffith boyce e...
  • 14 篇 ma chao
  • 14 篇 linfeng zhang
  • 13 篇 chen yixiao
  • 13 篇 y. jiao

语言

  • 979 篇 英文
  • 47 篇 其他
  • 4 篇 中文
检索条件"机构=Program of Applied and Computational Mathematics"
1030 条 记 录,以下是961-970 订阅
排序:
Towards Implementation of the Pressure-Regulated, Feedback-Modulated Model of Star Formation in Cosmological Simulations: Methods and Application to TNG
arXiv
收藏 引用
arXiv 2024年
作者: Hassan, Sultan Ostriker, Eve C. Kim, Chang-Goo Bryan, Greg L. Burger, Jan D. Fielding, Drummond B. Forbes, John C. Genel, Shy Hernquist, Lars Jeffreson, Sarah M.R. Motwani, Bhawna Smith, Matthew C. Somerville, Rachel S. Steinwandel, Ulrich P. Teyssier, Romain Center for Cosmology and Particle Physics Department of Physics New York University 726 Broadway New YorkNY10003 United States Center for Computational Astrophysics Flatiron Institute 162 5th Ave New YorkNY10010 United States Department of Physics & Astronomy University of the Western Cape Cape Town7535 South Africa Department of Astrophysical Sciences Princeton University PrincetonNJ08544 United States Institute for Advanced Study 1 Einstein Drive PrincetonNJ08540 United States Department of Astronomy Columbia University 550 W 120th Street New YorkNY10027 United States Max-Planck-Institut für Astrophysik Karl-Schwarzschild-Str. 1 GarchingD-85748 Germany Department of Astronomy Cornell University IthacaNY14853 United States School of Physical and Chemical Sciences-Te Kura Matū University of Canterbury Private Bag 4800 Christchurch8140 New Zealand Columbia Astrophysics Laboratory Columbia University 550 West 120th Street New YorkNY10027 United States Center for Astrophysics Harvard & Smithsonian 60 Garden Street CambridgeMA United States Program in Applied and Computational Mathematics Princeton University Fine Hall Washington Road PrincetonNJ08544-1000 United States
Traditional star formation subgrid models implemented in cosmological galaxy formation simulations, such as that of Springel & Hernquist (2003, hereafter SH03), employ adjustable parameters to satisfy constraints ... 详细信息
来源: 评论
Ten quick tips for deep learning in biology
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Benjamin D. Gitter, Anthony Greene, Casey S. Raschka, Sebastian Maguire, Finlay Titus, Alexander J. Kessler, Michael D. Lee, Alexandra J. Chevrette, Marc G. Stewart, Paul Allen Britto-Borges, Thiago Cofer, Evan M. Yu, Kun-Hsing Carmona, Juan Jose Fertig, Elana J. Kalinin, Alexandr A. Signal, Beth Lengerich, Benjamin J. Triche, Timothy J. Boca, Simina M. In-Q-Tel Labs School of Engineering and Applied Sciences Harvard University Department of Genetics Harvard Medical School United States Department of Biostatistics and Medical Informatics University of Wisconsin-Madison MadisonWI United States Morgridge Institute for Research MadisonWI United States Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Biochemistry and Molecular Genetics University of Colorado School of Medicine AuroraCO United States Center for Health AI University of Colorado School of Medicine AuroraCO United States Department of Statistics University of Wisconsin Madison United States Faculty of Computer Science Dalhousie University Canada University of New Hampshire Bioeconomy.XYZ United States Department of Oncology Johns Hopkins University United States Institute for Genome Sciences University of Maryland School of Medicine United States Genomics and Computational Biology Graduate Program University of Pennsylvania United States Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania United States Wisconsin Institute for Discovery Department of Plant Pathology University of Wisconsin-Madison United States Department of Biostatistics and Bioinformatics Moffitt Cancer Center TampaFL United States Section of Bioinformatics and Systems Cardiology Klaus Tschira Institute for Integrative Computational Cardiology University Hospital Heidelberg Germany University Hospital Heidelberg Germany Lewis-Sigler Institute for Integrative Genomics Princeton University PrincetonNJ United States Graduate Program in Quantitative and Computational Biology Princeton University PrincetonNJ United States Department of Biomedical Informatics Harvard Medical School United States Department of Pathology Brigham and Women's Hospital United States Philips Healthcare CambridgeMA United States Philips Research
Machine learning is a modern approach to problem-solving and task automation. In particular, machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and us... 详细信息
来源: 评论
Advancing electrochemical impedance analysis through innovations in the distribution of relaxation times method
收藏 引用
Joule 2024年 第7期8卷 1958-1981页
作者: Maradesa, Adeleke Py, Baptiste Huang, Jake Lu, Yang Iurilli, Pietro Mrozinski, Aleksander Law, Ho Mei Wang, Yuhao Wang, Zilong Li, Jingwei Xu, Shengjun Meyer, Quentin Liu, Jiapeng Brivio, Claudio Gavrilyuk, Alexander Kobayashi, Kiyoshi Bertei, Antonio Williams, Nicholas J. Zhao, Chuan Danzer, Michael Zic, Mark Wu, Phillip Yrjänä, Ville Pereverzyev, Sergei Chen, Yuhui Weber, André Kalinin, Sergei V. Schmidt, Jan Philipp Tsur, Yoed Boukamp, Bernard A. Zhang, Qiang Gaberšček, Miran O'Hayre, Ryan Ciucci, Francesco Department of Mechanical and Aerospace Engineering The Hong Kong University of Science and Technology Hong Kong Metallurgical and Materials Engineering Colorado School of Mines Golden80401 United States Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing China Green Energy Storage Trento38123 Italy Department of Manufacturing and Production Engineering Faculty of Mechanical Engineering and Ship Technology Institute of Machine and Materials Technology Gdańsk University of Technology Gdańsk Poland Electrode Design for Electrochemical Energy Systems University of Bayreuth Bayreuth Germany School of Chemistry University of New South Wales Sydney Australia School of Advanced Energy Sun Yat-Sen University Shenzhen China Sustainable Energy Center CSEM Neuchâtel2002 Switzerland Interdisciplinary Faculty of Science and Engineering Shimane University Matsue Japan Centre for Electronic and Optical Materials National Institute for Materials Science Tsukuba Japan Department of Civil and Industrial Engineering University of Pisa Pisa Italy Department of Materials Imperial College London Exhibition Road LondonSW7 2AZ United Kingdom Department of Chemical Engineering Massachusetts Institute of Technology Cambridge02139 United States Electrical Energy Systems University of Bayreuth Bayreuth Germany Ruder Boskovic Institute Zagreb Croatia Department of Materials and Minerals Resources Engineering National Taipei University Taipei Taiwan Finland Johann Radon Institute for Computational and Applied Mathematics Linz Austria School of Science and Engineering Nanjing Tech. University Nanjing China Karlsruhe Germany Department of Materials Science and Engineering University of Tennessee KnoxvilleTN37996 United States Physical Science Division Pacific Northwest National Laboratory RichlandWA99354 United States Systems Engineering for Electrical Energy Storage University of B
Electrochemical impedance spectroscopy (EIS) is widely used in electrochemistry, energy sciences, biology, and beyond. Analyzing EIS data is crucial, but it often poses challenges because of the numerous possible equi... 详细信息
来源: 评论
Corrigendum: Hyperuniformity variation with quasicrystal local isomorphism class
收藏 引用
Journal of physics. Condensed matter : an Institute of Physics journal 2017年 第47期29卷 2017 Aug 8页
作者: C Lin P J Steinhardt S Torquato Department of Physics Princeton University Princeton NJ 08544 United States of America. Princeton Center for Theoretical Science Princeton University Princeton NJ 08544 United States of America. Department of Chemistry Princeton University Princeton NJ 08544 United States of America. Program of Applied and Computational Mathematics Princeton University Princeton NJ 08544 United States of America. Princeton Institute for the Science and Technology of Materials Princeton University Princeton NJ 08544 United States of America.
A prefactor was omitted in Equation (7) of the initial manuscript. The correct form of the equation is provided in this Corrigendum.◆ (© 2017 IOP Publishing Ltd.)
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Gamma-ray Bursts as Distance Indicators by a Statistical Learning Approach
arXiv
收藏 引用
arXiv 2024年
作者: Dainotti, Maria Giovanna Narendra, Aditya Pollo, Agnieszka Petrosian, Vahé Bogdan, Malgorzata Iwasaki, Kazunari Prochaska, Jason Xavier Rinaldi, Enrico Zhou, David National Astronomical Observatory of Japan Mitaka Tokyo181-8588 Japan The Graduate University for Advanced Studies SOKENDAI Kanagawa240-0193 Japan Space Science Institute BoulderCO80301 United States Doctoral School of Exact and Natural Sciences Jagiellonian University Krakow Poland Astronomical Observatory of Jagiellonian University Krakow Poland Warsaw Poland Department of Physics Stanford University 382 Via Pueblo Mall StanfordCA94305-4060 United States Kavli Institute for Particle Astrophysics and Cosmology Stanford University United States Department of Applied Physics Stanford University United States Department of Mathematics University of Wroclaw 50-384 Poland Department of Statistics Lund University LundSE-221 00 Sweden Center for Computational Astrophysics National Astronomical Observatory of Japan 2 Chome-21-1 Osawa Mitaka Tokyo181-8588 Japan University of California Santa Cruz 1156 High Street Santa CruzCA95064 United States Program RIKEN Saitama Wakoshi 351-0198 Japan Arizona State University 1151 S Forest Ave TempeAZ85281 United States
Gamma-ray bursts (GRBs) can be probes of the early universe, but currently, only 26% of GRBs observed by the Neil Gehrels Swift Observatory GRBs have known redshifts (z) due to observational limitations. To address th... 详细信息
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Author Correction: Visualizing structure and transitions in high-dimensional biological data
收藏 引用
Nature biotechnology 2020年 第1期38卷 108页
作者: Kevin R Moon David van Dijk Zheng Wang Scott Gigante Daniel B Burkhardt William S Chen Kristina Yim Antonia van den Elzen Matthew J Hirn Ronald R Coifman Natalia B Ivanova Guy Wolf Smita Krishnaswamy Department of Mathematics and Statistics Utah State University Logan UT USA. Cardiovascular Research Center section Cardiology Department of Internal Medicine Yale University New Haven CT USA. Department of Computer Science Yale University New Haven CT USA. School of Basic Medicine Qingdao University Qingdao China. Yale Stem Cell Center Department of Genetics Yale University New Haven CT USA. Computational Biology and Bioinformatics Program Yale University New Haven CT USA. Department of Genetics Yale University New Haven CT USA. Department of Computational Mathematics Science and Engineering Michigan State University East Lansing MI USA. Department of Mathematics Michigan State University East Lansing MI USA. Applied Mathematics Program Yale University New Haven CT USA. Department of Genetics Center for Molecular Medicine University of Georgia Athens GA USA. natalia.ivanova@uga.edu. Department of Mathematics and Statistics Université de Montréal Montréal Quebec Canada. guy.wolf@umontreal.ca. Mila-Quebec Artificial Intelligence Institute Montréal Quebec Canada. guy.wolf@umontreal.ca. Department of Computer Science Yale University New Haven CT USA. smita.krishnaswamy@yale.edu. Department of Genetics Yale University New Haven CT USA. smita.krishnaswamy@yale.edu.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
来源: 评论
Publisher Correction: Lithospheric foundering and underthrusting imaged beneath Tibet
收藏 引用
Nature communications 2018年 第1期9卷 3443页
作者: Min Chen Fenglin Niu Jeroen Tromp Adrian Lenardic Cin-Ty A Lee Wenrong Cao Julia Ribeiro 318 Keith-Wiess Geology Lab Department of Earth Science Rice University MS 126 6100 Main Street Houston TX 77005 USA. Min.Chen@rice.edu. 318 Keith-Wiess Geology Lab Department of Earth Science Rice University MS 126 6100 Main Street Houston TX 77005 USA. State Key Laboratory of Petroleum Resource and Prospecting and Unconventional Natural Gas Institute China University of Petroleum Beijing 102249 China. Department of Geosciences Princeton University Princeton New Jersey 08544 USA. Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA.
The original version of the Supplementary Information associated with this Article contained an error in Supplementary Figure 4 in which the colours on the maps rendered incorrectly. The HTML has been updated to inclu...
来源: 评论
26th Annual computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROSCIENCE 2017年 第Sup1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Kings County Hospital Center Brooklyn NY 11203 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics
来源: 评论