咨询与建议

限定检索结果

文献类型

  • 718 篇 期刊文献
  • 142 篇 会议
  • 1 册 图书

馆藏范围

  • 861 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 578 篇 理学
    • 257 篇 物理学
    • 204 篇 数学
    • 135 篇 生物学
    • 126 篇 化学
    • 121 篇 统计学(可授理学、...
    • 42 篇 系统科学
    • 25 篇 天文学
  • 524 篇 工学
    • 181 篇 计算机科学与技术...
    • 140 篇 软件工程
    • 100 篇 化学工程与技术
    • 86 篇 材料科学与工程(可...
    • 80 篇 生物医学工程(可授...
    • 75 篇 生物工程
    • 60 篇 电子科学与技术(可...
    • 56 篇 电气工程
    • 53 篇 力学(可授工学、理...
    • 49 篇 控制科学与工程
    • 47 篇 信息与通信工程
    • 44 篇 光学工程
    • 41 篇 动力工程及工程热...
    • 24 篇 仪器科学与技术
    • 22 篇 机械工程
    • 21 篇 冶金工程
  • 96 篇 医学
    • 65 篇 临床医学
    • 59 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
    • 25 篇 公共卫生与预防医...
  • 74 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 22 篇 工商管理
  • 40 篇 农学
  • 9 篇 法学
  • 8 篇 经济学
  • 5 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 21 篇 machine learning
  • 16 篇 density function...
  • 11 篇 molecular dynami...
  • 10 篇 gravitational wa...
  • 9 篇 deep learning
  • 9 篇 proteins
  • 7 篇 jamming
  • 7 篇 electronic struc...
  • 6 篇 iterative method...
  • 6 篇 feature extracti...
  • 6 篇 gene expression
  • 5 篇 support vector m...
  • 5 篇 inverse problems
  • 5 篇 galaxies
  • 5 篇 optimization
  • 5 篇 computational mo...
  • 5 篇 predictive model...
  • 5 篇 diffusion
  • 5 篇 mean square erro...
  • 5 篇 bioinformatics

机构

  • 19 篇 program in appli...
  • 18 篇 program in appli...
  • 18 篇 department of ph...
  • 17 篇 applied mathemat...
  • 15 篇 institute for pl...
  • 15 篇 department of ch...
  • 15 篇 department of me...
  • 15 篇 department of ap...
  • 14 篇 university of so...
  • 13 篇 department of ph...
  • 12 篇 department of as...
  • 12 篇 scuola di ingegn...
  • 12 篇 infn sezione di ...
  • 12 篇 dipartimento di ...
  • 12 篇 università degli...
  • 12 篇 infn trento inst...
  • 12 篇 graduate program...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...

作者

  • 40 篇 masuda naoki
  • 23 篇 jasra ajay
  • 14 篇 zhang linfeng
  • 14 篇 shattuck mark d.
  • 13 篇 o’hern corey s.
  • 12 篇 r. takahashi
  • 12 篇 j. c. bayley
  • 12 篇 k. komori
  • 12 篇 t. kajita
  • 12 篇 f. hellman
  • 12 篇 m. kinley-hanlon
  • 12 篇 metin demiralp
  • 12 篇 t. mcrae
  • 12 篇 a. parisi
  • 12 篇 t. sawada
  • 12 篇 s. rowan
  • 12 篇 s. m. aronson
  • 12 篇 v. p. mitrofanov
  • 12 篇 g. moreno
  • 12 篇 g. hemming

语言

  • 825 篇 英文
  • 31 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Program of Computational Science and Engineering"
861 条 记 录,以下是451-460 订阅
排序:
SUBCELLULAR TO TISSUE SCALE MODELING OF ISCHEMIA AND SPREADING DEPOLARIZATION
收藏 引用
IBRO Neuroscience Reports 2023年 15卷 S792-S792页
作者: Adam Newton Craig Kelley Amy Guo Joy Wang Sydney Zink Marcello Distasio Robert A Mcdougal William Lytton SUNY Downstate Health Sciences University Physiology And Pharamcology New York United States of America SUNY Downstate Health Sciences University Program In Biomedical Engineering New York United States of America Yale School of Public Health Health Informatics Program NEW HAVEN United States of America Yale School of Medicine Department Of Pathology NEW HAVEN United States of America Yale University Department Of Biostatistics NEW HAVEN United States of America Yale University Center For Medical Informatics NEW HAVEN United States of America Yale University Program In Computational Biology And Bioinformatic NEW HAVEN United States of America Yale University Wu Tsai Institute NEW HAVEN United States of America SUNY Downstate Health Sciences University Department Of Neurology New York United States of America Kings County Hospital Center Department Of Neurology New York United States of America SUNY Downstate Health Sciences University The Robert F. Furchgott Center Neural And Behavioral Science New York United States of America
来源: 评论
Ten quick tips for deep learning in biology
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Benjamin D. Gitter, Anthony Greene, Casey S. Raschka, Sebastian Maguire, Finlay Titus, Alexander J. Kessler, Michael D. Lee, Alexandra J. Chevrette, Marc G. Stewart, Paul Allen Britto-Borges, Thiago Cofer, Evan M. Yu, Kun-Hsing Carmona, Juan Jose Fertig, Elana J. Kalinin, Alexandr A. Signal, Beth Lengerich, Benjamin J. Triche, Timothy J. Boca, Simina M. In-Q-Tel Labs School of Engineering and Applied Sciences Harvard University Department of Genetics Harvard Medical School United States Department of Biostatistics and Medical Informatics University of Wisconsin-Madison MadisonWI United States Morgridge Institute for Research MadisonWI United States Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Biochemistry and Molecular Genetics University of Colorado School of Medicine AuroraCO United States Center for Health AI University of Colorado School of Medicine AuroraCO United States Department of Statistics University of Wisconsin Madison United States Faculty of Computer Science Dalhousie University Canada University of New Hampshire Bioeconomy.XYZ United States Department of Oncology Johns Hopkins University United States Institute for Genome Sciences University of Maryland School of Medicine United States Genomics and Computational Biology Graduate Program University of Pennsylvania United States Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania United States Wisconsin Institute for Discovery Department of Plant Pathology University of Wisconsin-Madison United States Department of Biostatistics and Bioinformatics Moffitt Cancer Center TampaFL United States Section of Bioinformatics and Systems Cardiology Klaus Tschira Institute for Integrative Computational Cardiology University Hospital Heidelberg Germany University Hospital Heidelberg Germany Lewis-Sigler Institute for Integrative Genomics Princeton University PrincetonNJ United States Graduate Program in Quantitative and Computational Biology Princeton University PrincetonNJ United States Department of Biomedical Informatics Harvard Medical School United States Department of Pathology Brigham and Women's Hospital United States Philips Healthcare CambridgeMA United States Philips Research
Machine learning is a modern approach to problem-solving and task automation. In particular, machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and us... 详细信息
来源: 评论
Current md forcefields fail to capture key features of protein structure and fluctuations: a case study of cyclophilin a and t4 lysozyme
arXiv
收藏 引用
arXiv 2020年
作者: Mei, Zhe Grigas, Alex T. Treado, John D. Corres, Gabriel Melendez Vuorte, Maisa Sammalkorpi, Maria Regan, Lynne Levine, Zachary A. O’Hern, Corey S. Department of Chemistry Yale University New HavenCT06520 United States Integrated Graduate Program in Physical and Engineering Biology Yale University New HavenCT06520 United States Graduate Program in Computational Biology and Bioinformatics Yale University New HavenCT06520 United States Department of Mechanical Engineering and Materials Science Yale University New HavenCT06520 United States Department of Biology UPR Humacao Puerto RicoHumacao00792 Puerto Rico Department of Chemistry and Materials Science School of Chemical Engineering Aalto University Aalto Finland Department of Bioproducts and Biosystems School of Chemical Engineering Aalto University Aalto Finland Institute of Quantitative Biology Biochemistry and Biotechnology Center for Synthetic and Systems Biology School of Biological Sciences University of Edinburgh Edinburgh United Kingdom Department of Pathology Yale School of Medicine New HavenCT06520 United States Department of Molecular Biophysics and Biochemistry Yale University New HavenCT06520 United States Department of Physics Yale University New HavenCT06520 United States Department of Applied Physics Yale University New HavenCT06520 United States
Globular proteins undergo thermal fluctuations in solution, while maintaining an overall well-defined folded structure. In particular, studies have shown that the core structure of globular proteins differs in small, ... 详细信息
来源: 评论
Isocitrate dehydrogenase 1 primes group-3 medulloblastomas for cuproptosis
收藏 引用
Cancer Cell 2025年 第6期43卷 1159-1174.e8页
作者: Dang, Derek Deogharkar, Akash McKolay, John Smith, Kyle S. Panwalkar, Pooja Hoffman, Simon Tian, Wentao Ji, Sunjong Azambuja, Ana P. Natarajan, Siva Kumar Lum, Joanna Bayliss, Jill Manzeck, Katie Sweha, Stefan R. Hamanishi, Erin Pun, Matthew Patel, Diya Rau, Sagar Animasahun, Olamide Achreja, Abhinav Ogrodzinski, Martin P. Diessl, Jutta Cotter, Jennifer Hawes, Debra Yang, Fusheng Doherty, Robert Franson, Andrea T. Hanaford, Allison R. Eberhart, Charles G. Raabe, Eric H. Orr, Brent A. Wechsler-Reya, Robert J. Chen, Brandon Lyssiotis, Costas A. Shah, Yatrik M. Lunt, Sophia Y. Banerjee, Ruma Judkins, Alexander R. Prensner, John R. Koschmann, Carl Waszak, Sebastian M. Nagrath, Deepak Simoes-Costa, Marcos Northcott, Paul A. Venneti, Sriram Laboratory of Brain Tumor Metabolism and Epigenetics Department of Pathology University of Michigan Ann Arbor MI United States Department of Developmental Neurobiology Neurobiology and Brain Tumor Program St. Jude Children's Research Hospital Memphis TN United States Center of Excellence in Neuro-Oncology Sciences St. Jude Children's Research Hospital Memphis TN United States Department of Pediatrics Michigan Medicine Ann Arbor MI United States Department of Pathology Boston Children's Hospital Boston MA United States Department of Systems Biology Harvard Medical School Boston MA United States Cancer Biology and Genetics Program Memorial Sloan Kettering Cancer Center New York NY United States Department of Chemical Engineering University of Michigan Ann Arbor MI United States Laboratory for Systems Biology of Human Diseases University of Michigan Ann Arbor MI United States Biointerfaces Institute University of Michigan Ann Arbor MI United States Department of Biomedical Engineering University of Michigan Ann Arbor MI United States Rogel Cancer Center University of Michigan Ann Arbor MI United States Department of Biochemistry and Molecular Biology Michigan State University East Lansing MI United States Department of Biological Chemistry University of Michigan Medical School Ann Arbor 48109 MI United States Department of Pathology and Laboratory Medicine Children's Hospital Los Angeles Los Angeles CA United States Keck School of Medicine University of Southern California Los Angeles CA United States Department of Pathology Johns Hopkins School of Medicine Baltimore MD United States Division of Neuropathology Department of Pathology School of Medicine Johns Hopkins University Baltimore MD United States Sidney Kimmel Comprehensive Cancer Center School of Medicine Johns Hopkins University Baltimore MD United States Division of Pediatric Oncology Department of Oncology School of Medicine Johns Hopkins University Baltimore MD United
MYC-driven group-3 medulloblastomas (MBs) are malignant pediatric brain cancers without cures. To define actionable metabolic dependencies, we identify upregulation of dihydrolipoyl transacetylase (DLAT), the E2-subun... 详细信息
来源: 评论
Modeling state-transition dynamics in resting-state brain signals by the hidden Markov and Gaussian mixture models
arXiv
收藏 引用
arXiv 2020年
作者: Ezaki, Takahiro Himeno, Yu Watanabe, Takamitsu Masuda, Naoki Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo153-8904 Japan PRESTO JST 4-1-8 Honcho Kawaguchi Saitama332-0012 Japan Department of Aeronautics and Astronautics The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo113-8656 Japan Laboratory for Cognition Circuit Dynamics RIKEN Centre for Brain Science Saitama351-0198 Japan International Research Center for Neurointelligence The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo113-0033 Japan Department of Mathematics State University of New York at Buffalo BuffaloNY14260-2900 United States Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo BuffaloNY14260-5030 United States
Recent studies have proposed that one can summarize brain activity into dynamics among a relatively small number of hidden states and that such an approach is a promising tool for revealing brain function. Hidden Mark... 详细信息
来源: 评论
Using physical features of protein core packing to distinguish real proteins from decoys
arXiv
收藏 引用
arXiv 2020年
作者: Grigas, Alex T. Mei, Zhe Treado, John D. Levine, Zachary A. Regan, Lynne O'Hern, Corey S. Graduate Program in Computational Biology and Bioinformatics Yale University New HavenCT06520 United States Integrated Graduate Program in Physical and Engineering Biology Yale University New HavenCT06520 United States Department of Chemistry Yale University New HavenCT06520 United States Department of Mechanical Engineering and Materials Science Yale University New HavenCT06520 United States Department of Pathology Yale University New HavenCT06520 United States Department of Molecular Biophysics and Biochemistry Yale University New HavenCT06520 United States Institute of Quantitative Biology Biochemistry and Biotechnology Centre for Synthetic and Systems Biology School of Biological Sciences University of Edinburgh Department of Physics Yale University New HavenCT06520 United States Department of Applied Physics Yale University New HavenCT06520 United States
The ability to consistently distinguish real protein structures from computationally generated model decoys is not yet a solved problem. One route to distinguish real protein structures from decoys is to delineate the... 详细信息
来源: 评论
Small inter-event times govern epidemic spreading on temporal networks
arXiv
收藏 引用
arXiv 2019年
作者: Masuda, Naoki Holme, Petter Department of Mathematics University at Buffalo State University of New York BuffaloNY14260-2900 United States Computational and Data-Enabled Science and Engineering Program University at Buffalo State University of New York BuffaloNY14260-5030 United States Institute of Innovative Research Tokyo Institute of Technology Yokohama226-8503 Japan
Just like the degrees of human and animal interaction networks, the distribution of the times between interactions is known to often be right-skewed and fat-tailed. Both these distributions affect epidemic dynamics st... 详细信息
来源: 评论
Ab initio phonon transport across grain boundaries in graphene using machine learning based on small dataset
arXiv
收藏 引用
arXiv 2019年
作者: Hashemi, Amirreza Guo, Ruiqiang Esfarjani, Keivan Lee, Sangyeop Computational Modeling and Simulation Program University of Pittsburgh PittsburghPA15261 United States Department of Mechanical Engineering and Materials Science University of Pittsburgh PittsburghPA15261 United States Department of Mechanical and Aerospace Engineering University of Virginia CharlottesvilleVA22904 United States Department of Materials Science and Engineering University of Virginia CharlottesvilleVA22904 United States Department of Physics University of Virginia CharlottesvilleVA22904 United States Department of Physics and Astronomy University of Pittsburgh PittsburghPA15261 United States
Establishing the structure-property relationship for grain boundaries (GBs) is critical for developing next generation functional materials, but has been severely hampered due to its extremely large configurational sp... 详细信息
来源: 评论
How to verify the precision of density-functional-theory implementations via reproducible and universal workflows
arXiv
收藏 引用
arXiv 2023年
作者: Bosoni, Emanuele Beal, Louis Bercx, Marnik Blaha, Peter Blügel, Stefan Bröder, Jens Callsen, Martin Cottenier, Stefaan Degomme, Augustin Dikan, Vladimir Eimre, Kristjan Flage-Larsen, Espen Fornari, Marco Garcia, Alberto Genovese, Luigi Giantomassi, Matteo Huber, Sebastiaan P. Janssen, Henning Kastlunger, Georg Krack, Matthias Kresse, Georg Kühne, Thomas D. Lejaeghere, Kurt Madsen, Georg K.H. Marsman, Martijn Marzari, Nicola Michalicek, Gregor Mirhosseini, Hossein Müller, Tiziano M.A. Petretto, Guido Pickard, Chris J. Poncé, Samuel Rignanese, Gian-Marco Rubel, Oleg Ruh, Thomas Sluydts, Michael Vanpoucke, Danny E.P. Vijay, Sudarshan Wolloch, Michael Wortmann, Daniel Yakutovich, Aliaksandr V. Yu, Jusong Zadoks, Austin Zhu, Bonan Pizzi, Giovanni Institut de Ciència de Materials de Barcelona ICMAB-CSIC Campus UAB Bellaterra08193 Spain Univ. Grenoble-Alpes CEA IRIG-MEM-L Sim Grenoble38000 France LausanneCH-1015 Switzerland Institute for Materials Chemistry Technical University of Vienna Getreidemarkt 9/165-TC ViennaA-1060 Austria Peter Grünberg Institut Institute for Advanced Simulation Forschungszentrum Jülich JARA JülichD-52425 Germany Forschungszentrum Jülich JülichD-52425 Germany Department of Electromechanical Systems and Metal Engineering Ghent University Belgium Ghent University Belgium Institute of Atomic and Molecular Sciences Academia Sinica Taipei10617 Taiwan Norwegian EuroHPC Competence Center Sigma2 AS Norway SINTEF Industry Materials Physics Oslo Norway Department of Physics Science of Advanced Materials Program Central Michigan University Mount PleasantMI48859 United States Université catholique de Louvain Chemin des Étoiles 8 Louvain-la-Neuve1348 Belgium LausanneCH-1015 Switzerland Kongens Lyngby2800 Denmark VilligenCH-5232 Switzerland University of Vienna Faculty of Physics Center for Computational Materials Science Kolingasse 14-16 ViennaA-1090 Austria VASP Software GmbH Sensengasse 8 ViennaA-1090 Austria Helmholtz-Zentrum Dresden-Rossendorf GörlitzD-02826 Germany Center for Sustainable Systems Design University of Paderborn PaderbornD-33098 Germany OCAS NV ArcelorMittal Global R&D Gent Pres. J. F. Kennedylaan 3 ZelzateB-9060 Belgium Dynamics of Condensed Matter Theoretical Chemistry University of Paderborn PaderbornD-33098 Germany HPE HPC EMEA Research Lab BaselCH-4051 Switzerland Department of Materials Science & Metallurgy University of Cambridge 27 Charles Babbage Road CambridgeCB3 0FS United Kingdom Advanced Institute for Materials Research Tohoku University 2-1-1 Katahira Aoba Sendai980-8577 Japan Department of Materials Science and Engineering McMaster University 1280 Main Street West HamiltonONL8S 4L8 Canada ePot
In the past decades many density-functional theory methods and codes adopting periodic boundary conditions have been developed and are now extensively used in condensed matter physics and materials science research. O... 详细信息
来源: 评论
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems  32
End-to-end symmetry preserving inter-atomic potential energy...
收藏 引用
32nd Conference on Neural Information Processing Systems, NeurIPS 2018
作者: Zhang, Linfeng Han, Jiequn Wang, Han Saidi, Wissam A. Car, Roberto Weinan, E. Program in Applied and Computational Mathematics Princeton University United States Institute of Applied Physics and Computational Mathematics China CAEP Software Center for High Performance Numerical Simulation China Department of Mechanical Engineering and Materials Science University of Pittsburgh United States Department of Chemistry Department of Physics Princeton University United States Princeton Institute for the Science and Technology of Materials Princeton University United States Department of Mathematics Princeton University United States Beijing Institute of Big Data Research China
Machine learning models are changing the paradigm of molecular modeling, which is a fundamental tool for material science, chemistry, and computational biology. Of particular interest is the inter-atomic potential ene... 详细信息
来源: 评论