The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed *** cell death,such as pyroptosis and ferroptosis,can efficientl...
详细信息
The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed *** cell death,such as pyroptosis and ferroptosis,can efficiently boost antitumor ***,the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains ***,a multifunctional pH-responsive theranostic nanoplatform(M@P)is designed and constructed by self-assembly of aggregation-induced emission photosensitizer MTCN-3 and immunoadjuvant Poly(l:C),which are further encapsulated in amphiphilic *** nanoplatform is found to have the characteristics of cancer cell targeting,pH response,near-infrared fluorescence imaging,and lysosome ***,after targeting lysosomes,M@P can cause lysosome dysfunction through the generation of reactive oxygen species and heat under light irradiation,triggering pyroptosis and ferroptosis of tumor cells,achieving immunogenic cell death,and further enhancing immunotherapy through the combined effect with the immunoadjuvant Poly(I:C).The anti-tumor immunotherapy effect of M@P has been further demonstrated in in vivo antitumor experiment of 4T1 tumor-bearing mouse model with poor *** research would provide an impetus as well as a novel strategy for dual function inducers and combined immune activators enhanced photoimmunotherapy.
The simultaneous optimization of the bulk and surface characteristics of photoelectrodes is essential to maximize their photoelectrochemical(PEC)*** report a novel one-pot hydrothermal synthesis of textured and surfac...
详细信息
The simultaneous optimization of the bulk and surface characteristics of photoelectrodes is essential to maximize their photoelectrochemical(PEC)*** report a novel one-pot hydrothermal synthesis of textured and surface-reconstructed BiVO_(4)photoanodes(ts-BVO),achieving significant improvements in PEC water *** controlling precursor molarity and ethylene glycol(EG)addition,we developed a stepwise dual reaction(SDR)mechanism,which enables simultaneous bulk texture development and surface *** optimized CoBi/ts-BVO photoanode exhibited a photocurrent density of 4.3 mA∙cm^(−2)at 1.23 V *** hydrogen electrode(RHE)with a high Faradaic efficiency of 98%under one sun *** with nontextured BiVO_(4),the charge transport efficiency increased from 8%to 70%,whereas the surface charge transfer efficiency improved from 9%to 85%.These results underscore the critical role of both bulk and surface engineering in enhancing PEC *** findings offer a streamlined approach for improving the intrinsic properties of photoanodes in solar water splitting.
The global nitrogen cycle holds immense importance due to its crucial role in supporting life, supplying vital nutrients for plant growth, preserving environmental balance, and enabling the proper functioning of ecosy...
The global nitrogen cycle holds immense importance due to its crucial role in supporting life, supplying vital nutrients for plant growth, preserving environmental balance, and enabling the proper functioning of ecosystems. However, human activities frequently disrupt this cycle, leading to the accumulation of nitrates and nitrites in water bodies. This accumulation causes environmental pollution and health risks. Traditional methods for treating nitrogen pollution, including biological, physical, and chemical approaches, have inherent limitations. In recent years, electrocatalysis has emerged as a promising and sustainable approach for nitrogen management. This technology offers superior efficiency, high selectivity, and environmental *** not only enables accurate detection of nitrogen pollutants in the environment but also facilitates their conversion into harmless nitrogen gas. Moreover, recent advancements have focused on the upcycling of nitrogen pollutants into valuable compounds,such as ammonia and urea. In this comprehensive review, we showcase the applications of electrocatalysis in sustainable nitrogen management. Specifically, we highlight its use in the sensing, removal, and upcycling of major nitrogen pollutants,including nitrate(NO3-), nitrite(NO2-), and nitric oxide(NO). We discuss the use of catalysts, such as Pd alloys, Cu-based, and Fe-based materials, in electrochemical sensing and catalysis. Additionally, we explore recent advancements in the conversion of nitrogen pollutants into valuable compounds like ammonia and urea. The review also addresses current challenges and future opportunities in the field, including innovations in sensor and catalyst design, as well as large-scale treatment strategies. We anticipate that these perspectives will provide profound insights for effective nitrogen pollution control and sustainable utilization of nitrogen resources.
Building differentiated charge distributed polarized atomic pairs may be an alternative for N2 activation. In this work, CuInS2 atomic layers with asymmetric In-In polarized site pairs are prepared by doping Fe single...
详细信息
Compositionally complex solid electrolyte(Li_(0.375)Sr_(0.4375))(Ta_(0.375)Nb_(0.375)Zr_(0.125)Hf_(0.125))O_(3)(LSTNZH)samples are synthesized using different sintering temperatures,durations,and cooling conditions(fu...
详细信息
Compositionally complex solid electrolyte(Li_(0.375)Sr_(0.4375))(Ta_(0.375)Nb_(0.375)Zr_(0.125)Hf_(0.125))O_(3)(LSTNZH)samples are synthesized using different sintering temperatures,durations,and cooling conditions(furnace cooling(FC)*** quenching(AQ)).The temperature-dependent grain growth has been examined to investigate the microstructural evolution and the origin of exaggerated(abnormal)grain *** moderate temperatures,the grain growth of LSTNZH follows a cubic root growth model with an Arrhenius temperature *** increasing temperature,bimodal microstructures develop,and the Arrhenius temperature dependence breaks ***,increasing the temperature induces increased Nb segregation at general grain boundaries(GBs),in contrast to classical GB segregation models but suggesting premelting-like GB disordering,which can explain the observed abnormal grain growth(AGG).In addition,the large grains become faceted with increasing temperature,which occurs concurrently with the temperature-induced transitions in GB segregation and grain growth,thereby further supporting the occurrence of a GB phase-like(complexion)*** impacts on the densification,ionic conductivity,and hardness are also *** work provides a new insight into the fundamental understanding of the grain growth mechanisms of the emergent class of medium-and high-entropy compositionally complex ceramics(CCCs),which is essential for tailoring microstructures and material properties.
Solar-driven carbon dioxide reduction reaction(CO_(2)RR)provides an oppor tunity to produce value-added chemical feedstocks and ***,achieving efficient and stable photoelectrochemical(PEC)CO_(2)RR into selec tive prod...
详细信息
Solar-driven carbon dioxide reduction reaction(CO_(2)RR)provides an oppor tunity to produce value-added chemical feedstocks and ***,achieving efficient and stable photoelectrochemical(PEC)CO_(2)RR into selec tive products is challenging owing to the difficulties associated with the optical and the electrical configuration of PEC devices and electrocatalyst ***,we construct an efficient,concentrated sunlight-driven CO_(2)RR setup consisting of InGaP/GaAs/Ge triple-junction cell as a photoanode and oxide-derived Au(Ox-Au)as a cathode to perform the unassisted PEC CO_(2)*** one-sun illumination,a maximum operating current density of 11.5 mA cm^(-2) with an impressive Faradaic efficiency(FE)of~98%is achieved for carbon monoxide(CO)production,leading to a solar-to-fuel conversion efficiency of~15%.Under concentrated intensity of 10 sun,the photoanode records a maximum current density of~124 mAcm^(-2) and maintains~60%of FE for CO *** results demonstrate crucial advancements in usingⅢ-Ⅴbased photoanodes for concentrated PEC CO_(2)RR.
Precipitation at grain boundaries is typically not regarded as an efficient method for strengthening materials since it can induce grain boundary embrittlement, which detrimentally affects ductility. In this research,...
详细信息
Magnesium-based batteries are potential candidates for next-generation rechargeable batteries due to the divalent nature of magnesium cations and the natural abundance of magnesium resources. In this study, the electr...
详细信息
Low bulk density greatly restricts the large-scale application of electrospun carbon-based fiber membrane as electrode in energy storage devices. To solve the above challenges, herein an orientation-compaction densifi...
详细信息
Low bulk density greatly restricts the large-scale application of electrospun carbon-based fiber membrane as electrode in energy storage devices. To solve the above challenges, herein an orientation-compaction densification strategy is proposed to enhance the bulk density and volumetric capacity of PAN-based carbon nanofiber membranes as self-supporting electrode used in lithium-ion batteries(LIBs). Specifically, highly-oriented fibers are achieved by high-speed roller collecting during electrospinning, and compaction densification is conducted by hot-pressing treatment. The effects of collecting speed and hot-pressing pressure on the morphology, conductivity,bulk density, tensile strength, and flexibility of the obtained carbon nanofiber membrane are *** to conventional fiber membranes, of which fibers are disorderly stacked, the oriented fiber membrane is much easier to achieve dense stacking by compaction. The obtained dense carbon nanofiber membrane demonstrates a bulk density of 0.566 g cm-3, and shows a significantly-enhanced volumetric capacity(318.3 mA h cm-3), high-rate performance(86.6 mA h cm-3at 5 A g-1), and satisfactory cycling stability when used as selfsupporting electrode of LIBs.
The capability of measuring the temperature at nanometer length scales is highly desirable and useful in numerous fields such as plasmonics, biomedicine, and nanochemistry. Precise and easy-to-implement temperature me...
详细信息
暂无评论