咨询与建议

限定检索结果

文献类型

  • 437 篇 期刊文献
  • 87 篇 会议
  • 2 册 图书

馆藏范围

  • 526 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 317 篇 理学
    • 198 篇 生物学
    • 67 篇 化学
    • 60 篇 数学
    • 44 篇 物理学
    • 28 篇 统计学(可授理学、...
    • 10 篇 系统科学
  • 255 篇 工学
    • 85 篇 生物工程
    • 80 篇 计算机科学与技术...
    • 77 篇 生物医学工程(可授...
    • 60 篇 软件工程
    • 57 篇 化学工程与技术
    • 15 篇 信息与通信工程
    • 13 篇 材料科学与工程(可...
    • 11 篇 控制科学与工程
    • 10 篇 机械工程
    • 10 篇 环境科学与工程(可...
    • 9 篇 仪器科学与技术
    • 9 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 光学工程
    • 5 篇 冶金工程
  • 109 篇 医学
    • 66 篇 临床医学
    • 58 篇 基础医学(可授医学...
    • 35 篇 药学(可授医学、理...
    • 11 篇 公共卫生与预防医...
  • 72 篇 农学
    • 29 篇 作物学
  • 36 篇 管理学
    • 21 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
  • 6 篇 教育学
    • 4 篇 教育学
    • 4 篇 心理学(可授教育学...
  • 2 篇 经济学
  • 2 篇 法学
  • 1 篇 文学

主题

  • 26 篇 proteins
  • 18 篇 bioinformatics
  • 9 篇 machine learning
  • 9 篇 gene expression
  • 9 篇 rna
  • 8 篇 genes
  • 8 篇 molecular dynami...
  • 7 篇 jamming
  • 7 篇 amino acids
  • 6 篇 data mining
  • 5 篇 diseases
  • 4 篇 cancer
  • 4 篇 computational bi...
  • 4 篇 genomics
  • 3 篇 biology computin...
  • 3 篇 protein engineer...
  • 3 篇 data integration
  • 3 篇 metagenomics
  • 3 篇 molecular dockin...
  • 3 篇 genome-wide asso...

机构

  • 20 篇 department of ph...
  • 15 篇 department of me...
  • 15 篇 department of ap...
  • 12 篇 graduate program...
  • 10 篇 department of in...
  • 10 篇 program in compu...
  • 10 篇 department of co...
  • 9 篇 department of ph...
  • 8 篇 department of me...
  • 8 篇 department of ap...
  • 7 篇 national institu...
  • 7 篇 integrated gradu...
  • 7 篇 department of tw...
  • 7 篇 university of gl...
  • 7 篇 department of bi...
  • 7 篇 department of ge...
  • 6 篇 institute for ca...
  • 6 篇 division of card...
  • 6 篇 royal stoke univ...
  • 6 篇 department of ge...

作者

  • 18 篇 krishnaswamy smi...
  • 14 篇 o’hern corey s.
  • 13 篇 shattuck mark d.
  • 10 篇 hongyu zhao
  • 9 篇 grigas alex t.
  • 9 篇 wolf guy
  • 9 篇 smita krishnaswa...
  • 8 篇 wei zheng
  • 8 篇 corey s. o'hern
  • 8 篇 kluger yuval
  • 8 篇 mark gerstein
  • 8 篇 rungrotmongkol t...
  • 7 篇 van dijk david
  • 6 篇 eleftheria zeggi...
  • 6 篇 caroline hayward
  • 6 篇 mark d. shattuck
  • 6 篇 gerstein mark
  • 6 篇 o'hern corey s.
  • 5 篇 timothy m frayli...
  • 5 篇 danish saleheen

语言

  • 498 篇 英文
  • 16 篇 其他
  • 9 篇 中文
检索条件"机构=Program on Bioinformatics and Computational Biology"
526 条 记 录,以下是11-20 订阅
排序:
A Flow Artist for High-Dimensional Cellular Data  33
A Flow Artist for High-Dimensional Cellular Data
收藏 引用
33rd IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2023
作者: MacDonald, Kincaid Bhaskar, Dhananjay Thampakkul, Guy Nguyen, Nhi Zhang, Joia Perlmutter, Michael Adelstein, Ian Krishnaswamy, Smita Yale University Department of Mathematics United States Pomona College Department of Mathematics United States University of Washington Department of Statistics United States Boise State University Department of Mathematics United States Yale University Department of Computer Science United States Yale University Applied Mathematics Program United States Yale University Computational Biology and Bioinformatics Program United States
We consider the problem of embedding point cloud data sampled from an underlying manifold with an associated flow or velocity. Such data arises in many contexts where static snapshots of dynamic entities are measured,... 详细信息
来源: 评论
BRAINLM: A FOUNDATION MODEL FOR BRAIN ACTIVITY RECORDINGS  12
BRAINLM: A FOUNDATION MODEL FOR BRAIN ACTIVITY RECORDINGS
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Caro, Josue Ortega de Fonseca, Antonio H. Rizvi, Syed A. Rosati, Matteo Averill, Christopher Cross, James L. Mittal, Prateek Zappala, Emanuele Dhodapkar, Rahul M. Abdallah, Chadi G. van Dijk, David Wu Tsai Institute United States Interdepartmental Neuroscience Program Yale University United States Baylor College of Medicine United States Department of Computer Science United States Yale School of Medicine United States University of Southern California United States Interdepartmental Program in Computational Biology & Bioinformatics United States Internal Medicine United States Cardiovascular Research Center Yale University United States Department of Mathematics and Statistics Idaho State University United States
We introduce the Brain Language Model (BrainLM), a foundation model for brain activity dynamics trained on 6,700 hours of fMRI recordings. Utilizing self-supervised masked-prediction training, BrainLM demonstrates pro... 详细信息
来源: 评论
APIR:Aggregating Universal Proteomics Database Search Algorithms for Peptide Identification with FDR Control
收藏 引用
Genomics, Proteomics & bioinformatics 2024年 第2期22卷 171-187页
作者: Yiling Elaine Chen Xinzhou Ge Kyla Woyshner MeiLu McDermott Antigoni Manousopoulou Scott B.Ficarro Jarrod A.Marto Kexin Li Leo David Wang Jingyi Jessica Li Department of Statistics and Data Science University of CaliforniaLos AngelesCA 90095USA Department of Immuno-Oncology Beckman Research InstituteCity of Hope National Medical CenterDuarteCA 91010USA Department of Quantitative and Computational Biology University of Southern CaliforniaLos AngelesCA 90089USA Department of Cancer Biology and Blais Proteomics Center Dana-Farber Cancer InstituteDepartment of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA 02215USA Department of Pediatrics City of Hope National Medical CenterDuarteCA 91010USA Bioinformatics Interdepartmental Program University of CaliforniaLos AngelesCA 90095USA Department of Human Genetics University of CaliforniaLos AngelesCA 90095USA Department of Computational Medicine University of CaliforniaLos AngelesCA 90095USA Department of Biostatistics University of CaliforniaLos AngelesCA 90095USA
Advances in mass spectrometry(MS)have enabled high-throughput analysis of proteomes in biological *** state-of-the-art MS data analysis relies on database search algorithms to quantify proteins by identifying peptide... 详细信息
来源: 评论
Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures
收藏 引用
细胞研究(英文版) 2021年 第5期31卷 495-516页
作者: Lei Sun Kui Xu Wenze Huang Yucheng T.Yang Pan Li Lei Tang Tuanlin Xiong Qiangfeng Cliff Zhang MOE Key Laboratory of Bioinformatics Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologySchool of Life SciencesTsinghua UniversityBeijing 100084China Tsinghua-Peking Center for Life Sciences Beijing 100084China Program in Computational Biology and Bioinformatics Yale UniversityNew HavenCT 06520USA Department of Molecular Biophysics and Biochemistry Yale UniversityNew HavenCT 06520USA
Interactions with RNA-binding proteins (RBPs) are integral to RNA function and cellular regulation,and dynamically reflect specific cellular ***,presently available tools for predicting RBP-RNA interactions employ RNA... 详细信息
来源: 评论
Multiomics Reveals Induction of Neuroblastoma SK-N-BE(2)C Cell Death by Mitochondrial Division Inhibitor 1 through Multiple Effects
收藏 引用
Journal of Proteome Research 2024年 第1期23卷 301-315页
作者: Wang, Wei-Hsuan Kao, Yi-Chun Hsieh, Chiao-Hui Tsai, Shin-Yu Cheung, Chantal Hoi Yin Huang, Hsuan-Cheng Juan, Hsueh-Fen Genome and Systems Biology Degree Program Academia Sinica and National Taiwan University Taipei 106 Taiwan Department of Life Science National Taiwan University Taipei 106 Taiwan Center for Computational and Systems Biology National Taiwan University Taipei 106 Taiwan Institute of Biomedical Informatics National Yang Ming Chiao Tung University Taipei 112 Taiwan Graduate Institute of Biomedical Electronics and Bioinformatics National Taiwan University Taipei 106 Taiwan Center for Advanced Computing and Imaging in Biomedicine National Taiwan University Taipei 106 Taiwan
Mitochondrial division inhibitor 1 (Mdivi-1) is a well-known synthetic compound aimed at inhibiting dynamin-related protein 1 (Drp1) to suppress mitochondrial fission, making it a valuable tool for studying mitochondr... 详细信息
来源: 评论
Single-cell multi-ome regression models identify functional and disease-associated enhancers and enable chromatin potential analysis (vol 56, pg 627, 2024)
收藏 引用
NATURE GENETICS 2024年 第6期56卷 1319-1319页
作者: Mitra, Sneha Malik, Rohan Wong, Wilfred Rahman, Afsana Hartemink, Alexander J. Pritykin, Yuri Dey, Kushal K. Leslie, Christina S. Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center New York City NY USA Rye Country Day School Rye NY USA Tri-Institutional Training Program in Computational Biology and Medicine New York City NY USA Hunter College City University of New York New York City NY USA Department of Computer Science Duke University Durham NC USA Program in Computational Biology and Bioinformatics Duke University Durham NC USA Center for Genomic and Computational Biology Duke University Durham NC USA Department of Computer Science Princeton University Princeton NJ USA Lewis-Sigler Institute for Integrative Genomics Princeton University Princeton NJ USA
We present a gene-level regulatory model, single-cell ATAC + RNA linking (SCARlink), which predicts single-cell gene expression and links enhancers to target genes using multi-ome (scRNA-seq and scATAC–seq co-assay) ... 详细信息
来源: 评论
Particle-based simulations reveal two positive feedback loops allow relocation and stabilization of the polarity site during yeast mating
收藏 引用
PLoS computational biology 2023年 第10 October期19卷 e1011523-e1011523页
作者: Guan, Kaiyun Curtis, Erin R. Lew, Daniel J. Elston, Timothy C. Curriculum in Bioinformatics and Computational Biology University of North Carolina at Chapel Hill Chapel HillNC United States Department of Biology Massachusetts Institute of Technology CambridgeMA United States Department of Pharmacology and Computational Medicine Program University of North Carolina at Chapel Hill Chapel HillNC United States
Many cells adjust the direction of polarized growth or migration in response to external directional cues. The yeast Saccharomyces cerevisiae orient their cell fronts (also called polarity sites) up pheromone gradient... 详细信息
来源: 评论
Higher-Order Generalization Bounds: Learning Deep Probabilistic programs via PAC-Bayes Objectives
arXiv
收藏 引用
arXiv 2022年
作者: Warrell, Jonathan Gerstein, Mark Program in Computational Biology and Bioinformatics Department of Molecular Biophysics and Biochemistry Yale University New HavenCT06520 United States
Deep Probabilistic programming (DPP) allows powerful models based on recursive computation to be learned using efficient deep-learning optimization techniques. Additionally, DPP offers a unified perspective, where inf... 详细信息
来源: 评论
Bayesian Spectral Graph Denoising with Smoothness Prior
Bayesian Spectral Graph Denoising with Smoothness Prior
收藏 引用
Annual Conference on Information Sciences and Systems (CISS)
作者: Sam Leone Xingzhi Sun Michael Perlmutter Smita Krishnaswamy Program for Applied Mathematics Yale University Department of Computer Science Yale University Department of Mathematics Boise State University Department of Genetics Yale School of Medicine Wu Tsai Institute Yale University FAIR Meta AI Computational Biology and Bioinformatics Program Yale University
Here we consider the problem of denoising features associated to complex data, modeled as signals on a graph, via a smoothness prior. This is motivated in part by settings such as single-cell RNA where the data is ver...
来源: 评论
ProtSCAPE: Mapping the landscape of protein conformations in molecular dynamics
arXiv
收藏 引用
arXiv 2024年
作者: Viswanath, Siddharth Bhaskar, Dhananjay Johnson, David R. Rocha, João Felipe Castro, Egbert Grady, Jackson D. Grigas, Alex T. Perlmutter, Michael A. O’Hern, Corey S. Krishnaswamy, Smita Department of Computer Science Yale University United States Department of Genetics Yale University United States Program in Computing Boise State University United States Computational Biology and Bioinformatics Program Yale University United States Department of Mathematics Boise State University United States
Understanding the dynamic nature of protein structures is essential for comprehending their biological functions. While significant progress has been made in predicting static folded structures, modeling protein motio... 详细信息
来源: 评论