咨询与建议

限定检索结果

文献类型

  • 3,450 篇 会议
  • 3,360 篇 期刊文献
  • 65 册 图书

馆藏范围

  • 6,875 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,807 篇 工学
    • 3,325 篇 计算机科学与技术...
    • 2,799 篇 软件工程
    • 1,054 篇 信息与通信工程
    • 715 篇 生物工程
    • 673 篇 控制科学与工程
    • 524 篇 电气工程
    • 514 篇 生物医学工程(可授...
    • 500 篇 电子科学与技术(可...
    • 464 篇 光学工程
    • 341 篇 机械工程
    • 279 篇 化学工程与技术
    • 249 篇 仪器科学与技术
    • 204 篇 动力工程及工程热...
    • 145 篇 材料科学与工程(可...
    • 121 篇 交通运输工程
    • 110 篇 建筑学
  • 2,758 篇 理学
    • 1,308 篇 数学
    • 808 篇 物理学
    • 789 篇 生物学
    • 412 篇 统计学(可授理学、...
    • 308 篇 化学
    • 281 篇 系统科学
  • 1,265 篇 管理学
    • 726 篇 管理科学与工程(可...
    • 569 篇 图书情报与档案管...
    • 329 篇 工商管理
  • 477 篇 医学
    • 406 篇 临床医学
    • 347 篇 基础医学(可授医学...
    • 241 篇 药学(可授医学、理...
    • 130 篇 公共卫生与预防医...
  • 207 篇 法学
    • 182 篇 社会学
  • 104 篇 经济学
  • 71 篇 教育学
  • 69 篇 农学
  • 38 篇 文学
  • 24 篇 艺术学
  • 19 篇 军事学
  • 5 篇 哲学
  • 1 篇 历史学

主题

  • 137 篇 machine learning
  • 127 篇 semantics
  • 120 篇 deep learning
  • 95 篇 feature extracti...
  • 87 篇 training
  • 85 篇 computational mo...
  • 84 篇 artificial intel...
  • 77 篇 computer science
  • 73 篇 deep neural netw...
  • 65 篇 accuracy
  • 64 篇 data mining
  • 62 篇 visualization
  • 60 篇 object detection
  • 56 篇 reinforcement le...
  • 55 篇 neural networks
  • 53 篇 computer vision
  • 53 篇 forecasting
  • 52 篇 computer archite...
  • 51 篇 internet of thin...
  • 50 篇 optimization

机构

  • 210 篇 department of co...
  • 78 篇 department of co...
  • 56 篇 tencent ai lab
  • 49 篇 department of co...
  • 44 篇 department of co...
  • 43 篇 college of compu...
  • 38 篇 department of co...
  • 38 篇 department of el...
  • 37 篇 department of co...
  • 37 篇 pazhou lab
  • 37 篇 department of co...
  • 35 篇 peng cheng labor...
  • 32 篇 huawei noah's ar...
  • 31 篇 tsinghua univers...
  • 30 篇 university of sc...
  • 30 篇 state key lab on...
  • 29 篇 institute for ar...
  • 29 篇 department of co...
  • 28 篇 state key lab on...
  • 26 篇 department of co...

作者

  • 71 篇 sun maosong
  • 52 篇 liu zhiyuan
  • 43 篇 sun fuchun
  • 41 篇 bhowmik biswajit
  • 36 篇 zhu jun
  • 33 篇 huang minlie
  • 31 篇 huang wenbing
  • 30 篇 biswajit bhowmik
  • 27 篇 liu yang
  • 26 篇 timofte radu
  • 25 篇 yu kai
  • 24 篇 zhang min
  • 22 篇 liu qun
  • 21 篇 zhang lei
  • 21 篇 chen hao
  • 20 篇 fuchun sun
  • 18 篇 qinghua zheng
  • 18 篇 zheng qinghua
  • 17 篇 liu xin
  • 17 篇 zhao hai

语言

  • 6,551 篇 英文
  • 250 篇 其他
  • 77 篇 中文
  • 2 篇 日文
检索条件"机构=Programming Technology Lab Computer Science Department"
6875 条 记 录,以下是141-150 订阅
排序:
Towards Efficient Convolutional Neural Network for Embedded Hardware via Multi-Dimensional Pruning  23
Towards Efficient Convolutional Neural Network for Embedded ...
收藏 引用
Proceedings of the 60th Annual ACM/IEEE Design Automation Conference
作者: Hao Kong Di Liu Xiangzhong Luo Shuo Huai Ravi Subramaniam Christian Makaya Qian Lin Weichen Liu School of Computer Science and Engineering Nanyang Technological University Singapore and HP-NTU Digital Manufacturing Corporate Lab Nanyang Technological University Singapore Department of Computer Science Norwegian University of Science and Technology Trondheim Norway. School of Computer Science and Engineering Nanyang Technological University Singapore HP Inc. Palo Alto California USA
In this paper, we propose TECO, a multi-dimensional pruning framework to collaboratively prune the three dimensions (depth, width, and resolution) of convolutional neural networks (CNNs) for better execution efficienc...
来源: 评论
FM-FCN:A Neural Network with Filtering Modules for Accurate Vital Signs Extraction
收藏 引用
Research 2025年 第1期2024卷 92-106页
作者: Fangfang Zhu Qichao Niu Xiang Li Qi Zhao Honghong Su Jianwei Shuai Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen 361005China National Institute for Data Science in Health and Medicine and State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkXiamen UniversityXiamen 361005China Vitalsilicon Technology Co.Ltd. JiaxingZhejiang 314006China School of Computer Science and Software Engineering University of Science and Technology LiaoningAnshan 114051China Yangtze Delta Region Institute of Tsinghua University ZhejiangJiaxing 314006China Wenzhou Institute University of Chinese Academy of SciencesWenzhou 325001China Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health)Wenzhou 325001China
Neural networks excel at capturing local spatial patterns through convolutional modules,but they may struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological *** th... 详细信息
来源: 评论
Unmanned aerial vehicle based multi-person detection via deep neural network models
收藏 引用
Frontiers in Neurorobotics 2025年 19卷 1582995页
作者: Alshehri, Mohammed Zahoor, Laiba AlQahtani, Yahya Alshahrani, Abdulmonem AlHammadi, Dina Abdulaziz Jalal, Ahmad Liu, Hui Department of Computer Science King Khalid University Abha Saudi Arabia Faculty of Computer Science Air University Islamabad Pakistan Department of Informatics and Computer Systems King Khalid University Abha Saudi Arabia Department of Information Systems College of Computer and Information Sciences Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia Department of Computer Science and Engineering College of Informatics Korea University Seoul Korea Republic of Cognitive Systems Lab University of Bremen Bremen Germany Guodian Nanjing Automation Company Ltd. Nanjing China Jiangsu Key Laboratory of Intelligent Medical Image Computing School of Future Technology Nanjing University of Information Science and Technology Nanjing China
Introduction: Understanding human actions in complex environments is crucial for advancing applications in areas such as surveillance, robotics, and autonomous systems. Identifying actions from UAV-recorded videos bec... 详细信息
来源: 评论
Federated and transfer learning for cancer detection based on image analysis
收藏 引用
Neural Computing and Applications 2025年 第4期37卷 2239-2284页
作者: Bechar, Amine Medjoudj, Rafik Elmir, Youssef Himeur, Yassine Amira, Abbes Laboratoire LITAN École supérieure en Sciences et Technologies de l’Informatique et du Numérique RN 75 Amizour Bejaia06300 Algeria SGRE-Lab University Tahri Mohammed of Bechar Bechar08000 Algeria College of Engineering and Information Technology University of Dubai Dubai United Arab Emirates Department of Computer Science University of Sharjah sharjah United Arab Emirates Institute of Artificial Intelligence De Montfort University Leicester United Kingdom
This review highlights the efficacy of combining federated learning (FL) and transfer learning (TL) for cancer detection via image analysis. By integrating these techniques, research has shown improvements in diagnost... 详细信息
来源: 评论
VNLU-Net: Visual Network with Lightweight Union-net for Acute Myeloid Leukemia Detection on Heterogeneous Dataset
收藏 引用
Biomedical Signal Processing and Control 2025年 107卷
作者: Saikia, Rabul Deka, Roopam Sarma, Anupam Singh, Ngangbam Herojit Khan, Muhammad Attique Devi, Salam Shuleenda Department of Electronics & Communication Engineering National Institute of Technology Meghalaya Shillong India Department of Pathology & Lab Medicine All India Institute of Medical Sciences Guwahati Guwahati India Department of Onco-Pathology Dr. Bhubaneswar Borooah Cancer Institute Guwahati India Department of Computer Science & Engineering National Institute of Technology Meghalaya Shillong India Department of AI College of Computer Engineering and Science Prince Mohammad Bin Fahd University Al Khobar Saudi Arabia
Recent advancements in Artificial Intelligence (AI) and Deep Learning (DL) have shown promising results in Acute Myeloid Leukemia (AML) detection. However, challenges remain due to limited, annotated datasets and the ... 详细信息
来源: 评论
Applicability of the Minimal Dominating Set for Influence Maximisation in Multilayer Networks
arXiv
收藏 引用
arXiv 2025年
作者: Czuba, Michal Jia, Mingshan Bródka, Piotr Musial, Katarzyna Department of Artificial Intelligence Wroclaw University of Science and Technology 27 wybrzeze Wyspiańskiego st Wroclaw50-370 Poland Complex Adaptive Systems Lab Data Science Institute School of Computer Science University of Technology Sydney UltimoNSW2007 Australia
The minimal dominating set (MDS) is a well-established concept in network controllability and has been successfully applied in various domains, including sensor placement, network resilience, and epidemic containment.... 详细信息
来源: 评论
Vision-Based Multimodal Interfaces: A Survey and Taxonomy for Enhanced Context-Aware System Design  25
Vision-Based Multimodal Interfaces: A Survey and Taxonomy fo...
收藏 引用
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems
作者: Yongquan ‘Owen’ Hu Jingyu Tang Xinya Gong Zhongyi Zhou Shuning Zhang Don Samitha Elvitigala Florian ‘Floyd’ Mueller Wen Hu Aaron J. Quigley School of Computer Science and Engineering University of New South Wales Sydney Australia School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen China The University of Tokyo Tokyo Japan Tsinghua University Beijing China Exertion Games Lab Department of Human-Centred Computing Monash University Melbourne Australia School of Computer Science and Engineering University of New South Wales Syndey Australia CSIRO's Data61 Sydney Australia and University of New South Wales Sydney Australia
来源: 评论
SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Xiang Kong, Lingdong Shuai, Hui Zhang, Wenwei Pan, Liang Chen, Kai Liu, Ziwei Liu, Qingshan The College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China The School of Computing Department of Computer Science National University of Singapore CNRS@CREATE Singapore The School of Computer Science Nanjing University of Posts and Telecommunications Nanjing China Shanghai AI Laboratory Shanghai China S-Lab Nanyang Technological University Singapore
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and cam... 详细信息
来源: 评论
Mediating The Marginal: A Quantitative Analysis of Curated LGBTQ+ Content on Instagram  25
Mediating The Marginal: A Quantitative Analysis of Curated L...
收藏 引用
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems
作者: Garrett Souza Nina Lutz Katlyn M Turner Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge Massachusetts USA Department of Human Centered Design and Engineering University of Washington Seattle Washington USA Media Lab Massachusetts Institute of Technology Cambridge Massachusetts USA
来源: 评论
A Survey of Integrating Generative Artificial Intelligence and 6G Mobile Services: Architectures, Solutions, Technologies and Outlooks
收藏 引用
IEEE Transactions on Cognitive Communications and Networking 2025年
作者: Liu, Yi-Jing Du, Hongyang Xu, Xinyi Zhang, Ruichen Feng, Gang Cao, Bin Niyato, Dusit Kim, Dong In Jamalipour, Abbas Letaief, Khaled B. Tafazolli, Rahim University of Electronic Science and Technology of China National Key Lab on Wireless Communications Chengdu China University of Hong Kong Department of Electrical and Electronic Engineering Pok Fu Lam Hong Kong Nanyang Technological University College of Computing and Data Science Singapore Singapore Beijing University of Posts and Telecommunications State Key Laboratory of Networking and Switching Technology Beijing China Sungkyunkwan University Department of Electrical and Computer Engineering Suwon Korea Republic of University of Sydney School of Electrical and Computer Engineering Sydney Australia Hong Kong University of Science and Technology Department of Electronic and Computer Engineering Hong Kong Hong Kong University of Surrey Institute for Communication Systems School of Computer Science and Electronic Engineering United Kingdom
Generative artificial intelligence (GenAI) is rapidly driving a new phase of artificial intelligence revolution, marked by various applications such as ChatGPT, Sora and DeepSeek. With powerful capabilities in content... 详细信息
来源: 评论