咨询与建议

限定检索结果

文献类型

  • 694 篇 期刊文献
  • 300 篇 会议
  • 3 册 图书

馆藏范围

  • 997 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 722 篇 工学
    • 186 篇 计算机科学与技术...
    • 169 篇 化学工程与技术
    • 151 篇 软件工程
    • 117 篇 电子科学与技术(可...
    • 116 篇 电气工程
    • 113 篇 土木工程
    • 107 篇 船舶与海洋工程
    • 98 篇 材料科学与工程(可...
    • 65 篇 信息与通信工程
    • 59 篇 生物工程
    • 52 篇 光学工程
    • 51 篇 生物医学工程(可授...
    • 47 篇 控制科学与工程
    • 39 篇 动力工程及工程热...
    • 37 篇 力学(可授工学、理...
    • 34 篇 机械工程
    • 32 篇 仪器科学与技术
    • 31 篇 核科学与技术
    • 29 篇 冶金工程
    • 28 篇 航空宇航科学与技...
  • 567 篇 理学
    • 266 篇 物理学
    • 146 篇 数学
    • 105 篇 海洋科学
    • 95 篇 化学
    • 71 篇 生物学
    • 51 篇 统计学(可授理学、...
  • 78 篇 管理学
    • 50 篇 管理科学与工程(可...
    • 31 篇 图书情报与档案管...
  • 53 篇 医学
    • 46 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 11 篇 法学
  • 10 篇 农学
  • 6 篇 教育学
  • 2 篇 经济学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 18 篇 machine learning
  • 12 篇 gravitational wa...
  • 8 篇 naval vessels
  • 8 篇 training
  • 7 篇 solar cells
  • 7 篇 reinforcement le...
  • 7 篇 carbon nanotubes
  • 7 篇 helicale struktu...
  • 7 篇 remote sensing
  • 7 篇 gravitational wa...
  • 6 篇 support vector m...
  • 6 篇 ground state
  • 6 篇 optimization
  • 6 篇 silicon
  • 6 篇 electrodes
  • 6 篇 stability
  • 6 篇 shell model
  • 6 篇 gravitational wa...
  • 5 篇 conferences
  • 5 篇 deep neural netw...

机构

  • 61 篇 riken center for...
  • 59 篇 center for advan...
  • 20 篇 riken center for...
  • 19 篇 institute for pl...
  • 19 篇 university of so...
  • 17 篇 department of ph...
  • 17 篇 université libre...
  • 17 篇 department of ma...
  • 16 篇 department of as...
  • 16 篇 scuola di ingegn...
  • 16 篇 advanced technol...
  • 16 篇 king’s college l...
  • 16 篇 kamioka branch n...
  • 16 篇 the university o...
  • 16 篇 infn sezione di ...
  • 16 篇 dipartimento di ...
  • 16 篇 università degli...
  • 16 篇 ligo laboratory ...
  • 16 篇 university of ma...
  • 16 篇 stony brook univ...

作者

  • 28 篇 ikeda masahiro
  • 24 篇 sugiyama masashi
  • 20 篇 t. sawada
  • 17 篇 yue zhao
  • 16 篇 r. takahashi
  • 16 篇 j. c. bayley
  • 16 篇 k. komori
  • 16 篇 t. kajita
  • 16 篇 f. hellman
  • 16 篇 m. kinley-hanlon
  • 16 篇 t. mcrae
  • 16 篇 a. parisi
  • 16 篇 s. rowan
  • 16 篇 s. m. aronson
  • 16 篇 v. p. mitrofanov
  • 16 篇 a. j. tanasijczu...
  • 16 篇 g. moreno
  • 16 篇 g. hemming
  • 16 篇 a. z. jan
  • 16 篇 r. c. walet

语言

  • 909 篇 英文
  • 76 篇 其他
  • 10 篇 日文
  • 3 篇 中文
检索条件"机构=Project Engineering Advanced Engineering"
997 条 记 录,以下是1-10 订阅
排序:
Fault Diagnosis Method of Rolling Bearing Based on ESGMD-CC and AFSA-ELM
收藏 引用
Structural Durability & Health Monitoring 2024年 第1期18卷 37-54页
作者: Jiajie He Fuzheng Liu Xiangyi Geng Xifeng Liang Faye Zhang Mingshun Jiang School of Traffic&Transportation Engineering Central South UniversityChangsha410075China Project Management Department CRRC Advanced Composites Co.Ltd.Qingdao266108China School of Control Science and Engineering Shandong UniversityJinan250061China
Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and relia... 详细信息
来源: 评论
Enhance Adversarial Robustness via Geodesic Distance
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第8期5卷 4202-4216页
作者: Yan, Jun Yin, Huilin Zhao, Ziming Ge, Wancheng Zhang, Jingfeng Tongji University College of Electronics and Information Engineering Shanghai201804 China University of Auckland Faculty of Science Auckland1142 New Zealand RIKEN Center for Advanced Intelligence Project Tokyo103-0027 Japan
Adversarial training is an effective method to improve the model's adversarial robustness. To realize a considerable tradeoff between clean accuracy and adversarial robustness, surrogate loss minimization can be u... 详细信息
来源: 评论
Distortion and Uncertainty Aware Loss for Panoramic Depth Completion  40
Distortion and Uncertainty Aware Loss for Panoramic Depth Co...
收藏 引用
40th International Conference on Machine Learning, ICML 2023
作者: Yan, Zhiqiang Li, Xiang Wang, Kun Chen, Shuo Li, Jun Yang, Jian PCALab School of Computer Science and Engineering Nanjing University of Science and Technology China RIKEN Center for Advanced Intelligence Project Japan
Standard MSE or MAE loss function is commonly used in limited field-of-vision depth completion, treating each pixel equally under a basic assumption that all pixels have same contribution during optimization. Recently... 详细信息
来源: 评论
Feasibility Analysis of PPE Detection via YOLOv7 & YOLOv7-Pose to Enhance Workplace Safety  5
Feasibility Analysis of PPE Detection via YOLOv7 & YOLOv7-Po...
收藏 引用
5th International Conference on Smart Sensors and Application, ICSSA 2024
作者: Bakar, Nor Awatif Abu Norzaidi, Farid Azhari Kamarudin, Latifah Munirah Zakaria, Ammar Zakaria, Syed Muhammad Mamduh Syed Yeon, Ahmad Shakaff Ali Visvanathan, Retnam Zolkipli, Khairul Hafiz Abdullah, Asrul Sani Amin, Ahmad Helmi M. Baharom, Muhammad Azri Ahmad Khalid, Hafizal Faculty of Electrical Engineering & Technology University Malaysia Perlis Arau Malaysia Centre of Excellence for Advanced Sensor Technology University Malaysia Perlis Arau Malaysia Engineering Department IDERIA Sdn Bhd Kangar Malaysia Project Delivery and Technology PETRONAS Kuala Lumpur Malaysia Project Excellence PETRONAS Kuala Lumpur Malaysia
Ensuring workplace safety in Pre-Fabrication environments is important, particularly in adhering to safety compliance protocols through the correct usage of Personal Protective Equipment (PPE). However, existing syste... 详细信息
来源: 评论
Implementation of Object Tracking using YOLOv7 Pose Estimation for Human Activity Recognition in Fabrication Yard via CCTV Videos  5
Implementation of Object Tracking using YOLOv7 Pose Estimati...
收藏 引用
5th International Conference on Smart Sensors and Application, ICSSA 2024
作者: Madiahlagan, Sharitta Norzaidi, Farid Azhari Zakaria, Ammar Yeon, Ahmad Shakaff Ali Kamarudin, Latifah Munirah Zakaria, Syed Muhammad Mamduh Syed Ismail, Muhammad Khalid, Hafizal Baharom, Muhammad Azri Ahmad Amin, Ahmad Helmi M. Zolkipli, Khairul Hafiz Abdullah, Asrul Sani Faculty of Electrical Engineering and Technology University Malaysia Perlis Arau Malaysia Centre of Excellence for Advanced Sensor Technology University Malaysia Perlis Arau Malaysia Project Excellence PETRONAS Kuala Lumpur Malaysia Project Delivery and Technology PETRONAS Kuala Lumpur Malaysia
A new dataset is created in a fabrication yard environment for human activity classification. YOLOv7 object detection model is used to identify 5 classes which are welding, grinding, standing, sitting and walking. Fiv... 详细信息
来源: 评论
DEEP GEODESIC CANONICAL CORRELATION ANALYSIS FOR COVARIANCE-BASED NEUROIMAGING DATA  12
DEEP GEODESIC CANONICAL CORRELATION ANALYSIS FOR COVARIANCE-...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Ju, Ce Kobler, Reinmar J. Tang, Liyao Guan, Cuntai Kawanabe, Motoaki School of Computer Science and Engineering Nanyang Technological University Singapore Advanced Telecommunications Research Institute International Japan RIKEN Artificial Intelligence Project Japan School of Computer Science University of Sydney Australia
In human neuroimaging, multi-modal imaging techniques are frequently combined to enhance our comprehension of whole-brain dynamics and improve diagnosis in clinical practice. Modalities like electroencephalography and... 详细信息
来源: 评论
Saddle Point Optimization with Approximate Minimization Oracle and Its Application to Robust Berthing Control
收藏 引用
ACM Transactions on Evolutionary Learning and Optimization 2022年 第1期2卷 1–32页
作者: Akimoto, Youhei Miyauchi, Yoshiki Maki, Atsuo Faculty of Engineering Information and Systems University of Tsukuba and RIKEN Center for Advanced Intelligence Project 1-1-1 Tennodai Tsukuba Ibaraki305-8573 Japan Department of Naval Architecture and Ocean Engineering Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka565-0971 Japan
We propose an approach to saddle point optimization relying only on oracles that solve minimization problems approximately. We analyze its convergence property on a strongly convex-concave problem and show its linear ... 详细信息
来源: 评论
Using Joint Training Speaker Encoder With Consistency Loss to Achieve Cross-Lingual Voice Conversion and Expressive Voice Conversion
Using Joint Training Speaker Encoder With Consistency Loss t...
收藏 引用
2023 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2023
作者: Guo, Houjian Liu, Chaoran Ishi, Carlos Toshinori Ishiguro, Hiroshi Guardian Robot Project Riken Interactive Robot Research Team Japan Osaka University Graduate School of Engineering Science Japan Advanced Telecommunications Research Institute International Japan
Voice conversion systems have made significant advancements in terms of naturalness and similarity in common voice conversion tasks. However, their performance in more complex tasks such as cross-lingual voice convers... 详细信息
来源: 评论
QUICKVC: A Lightweight VITS-Based Any-to-Many Voice Conversion Model using ISTFT for Faster Conversion
QUICKVC: A Lightweight VITS-Based Any-to-Many Voice Conversi...
收藏 引用
2023 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2023
作者: Guo, Houjian Liu, Chaoran Ishi, Carlos Toshinori Ishiguro, Hiroshi Interactive Robot Research Team Guardian Robot Project RIKEN Japan Osaka University Graduate School of Engineering Science Japan Advanced Telecommunications Research Institute International Japan
With the development of automatic speech recognition and text-to-speech technology, high-quality voice conversion can be achieved by extracting source content information and target speaker information to reconstruct ... 详细信息
来源: 评论
Simultaneous Optimization of Carbon Fiber Allocation and Orientation by IFM-GA
收藏 引用
Chinese Journal of Mechanical engineering(Additive Manufacturing Frontiers) 2023年 第2期2卷 3-10页
作者: Kenta Fukui Ryota Nonami Advanced Course Project Design EngineeringNational Institute of Technology(KOSEN)Kure737-8506Japan
This paper proposes an individual fitness method genetic algorithm(IFM-GA)for carbon fiber-reinforced plastic(CFRP).The strength of CFRP depends on the carbon fiber allocation and *** carbon fiber is generated if this... 详细信息
来源: 评论