咨询与建议

限定检索结果

文献类型

  • 142 篇 会议
  • 59 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 202 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 157 篇 工学
    • 111 篇 计算机科学与技术...
    • 91 篇 软件工程
    • 37 篇 信息与通信工程
    • 24 篇 控制科学与工程
    • 18 篇 化学工程与技术
    • 17 篇 生物工程
    • 16 篇 电子科学与技术(可...
    • 14 篇 光学工程
    • 11 篇 机械工程
    • 11 篇 电气工程
    • 10 篇 农业工程
    • 10 篇 生物医学工程(可授...
    • 7 篇 动力工程及工程热...
    • 7 篇 网络空间安全
    • 6 篇 仪器科学与技术
    • 5 篇 交通运输工程
  • 86 篇 理学
    • 55 篇 数学
    • 19 篇 生物学
    • 18 篇 物理学
    • 16 篇 化学
    • 13 篇 统计学(可授理学、...
    • 8 篇 系统科学
  • 48 篇 管理学
    • 25 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 12 篇 农学
    • 10 篇 作物学
  • 8 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 公共卫生与预防医...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 艺术学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 10 篇 semantics
  • 7 篇 support vector m...
  • 6 篇 training
  • 5 篇 image segmentati...
  • 5 篇 accuracy
  • 5 篇 privacy
  • 3 篇 trees (mathemati...
  • 3 篇 educational inst...
  • 3 篇 convolution
  • 3 篇 vectors
  • 3 篇 data mining
  • 3 篇 computational mo...
  • 3 篇 syntactics
  • 3 篇 feature extracti...
  • 3 篇 natural language...
  • 3 篇 malware
  • 3 篇 labeling
  • 3 篇 forecasting
  • 3 篇 image reconstruc...
  • 3 篇 adaptation model...

机构

  • 15 篇 school of comput...
  • 11 篇 key lab. of inte...
  • 9 篇 school of comput...
  • 9 篇 peng cheng labor...
  • 8 篇 school of cyber ...
  • 8 篇 beijing key lab....
  • 8 篇 guangxi collabor...
  • 8 篇 key laboratory o...
  • 6 篇 provincial key l...
  • 6 篇 school of cyber ...
  • 6 篇 shanghai key lab...
  • 5 篇 jiangsu provinci...
  • 5 篇 school of inform...
  • 4 篇 jiangsu provinci...
  • 4 篇 institute of inf...
  • 4 篇 first-imaging te...
  • 4 篇 key lab. of inte...
  • 4 篇 school of inform...
  • 4 篇 school of comput...
  • 4 篇 school of comput...

作者

  • 14 篇 kong fang
  • 13 篇 zhu qiaoming
  • 11 篇 zhou guodong
  • 8 篇 huang qingming
  • 8 篇 xu qianqian
  • 7 篇 chunhe xia
  • 7 篇 tianbo wang
  • 7 篇 cao xiaochun
  • 6 篇 yang zhiyong
  • 6 篇 huang chongwen
  • 5 篇 chen chen
  • 5 篇 li peifeng
  • 4 篇 li yang
  • 4 篇 qian longhua
  • 4 篇 yang bo
  • 4 篇 yuen chau
  • 4 篇 zhang chao
  • 4 篇 xizhao luo
  • 4 篇 yanqin zhu
  • 4 篇 chen yang

语言

  • 195 篇 英文
  • 5 篇 中文
  • 3 篇 其他
检索条件"机构=Provincial Key Lab. for Computer Information Processing Technology"
202 条 记 录,以下是151-160 订阅
排序:
SIAVC: Semi-Supervised Framework for Industrial Accident Video Classification
arXiv
收藏 引用
arXiv 2024年
作者: Li, Zuoyong Lin, Qinghua Fan, Haoyi Zhao, Tiesong Zhang, David The Fujian Provincial Key Laboratory of Information Processing and Intelligent Control College of Computer and Control Engineering Minjiang University Fuzhou350121 China The School of Computer Science and Mathematics Fujian University of Technology Fuzhou350118 China The School of Computer and Artificial Intelligence Zhengzhou University Zhengzhou45000 China The Fujian Key Lab for Intelligent Processing and Wireless Transmission of Media Information Fuzhou University Fuzhou350108 China Shenzhen518172 China
Semi-supervised learning suffers from the imbalance of lab.led and unlab.led training data in the video surveillance scenario. In this paper, we propose a new semi-supervised learning method called SIAVC for industria... 详细信息
来源: 评论
Radio LFM Fuze Interference Identification Based on Convolutional Neural Network and Attention Mechanism
Radio LFM Fuze Interference Identification Based on Convolut...
收藏 引用
International Conference on Communication technology (ICCT)
作者: Zhaoxia Xian Zhiquan Bai Jikai Yang Jinqiu Zhao Caifeng Wang Xinhong Hao School of Information Science and Engineering Shandong University Shandong Provincial Key Lab. of Wireless Communication Technologies Qingdao Shandong China School of Computer and Information Engineering Qilu Institute of Technology Jinan Shandong China School of Mechatronical Engineering Beijing Institute of Technology Beijing China
In modern battlefields, the fuze is exposed to a complex electromagnetic environment, and suffers severe interference. To identify the typical interferences and improve the reliability of fuze, this paper designs a ra...
来源: 评论
T-net: Deep stacked scale-iteration network for image Dehazing
arXiv
收藏 引用
arXiv 2021年
作者: Zheng, Lirong Li, Yanshan Zhang, Kaihao Luo, Wenhan ATR National Key Lab. of Defense Technology Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China College of Engineering and Computer Science Australian National University CanberraACT Australia Tencent Shenzhen China
Hazy images reduce the visibility of the image content, and haze will lead to failure in handling subsequent computer vision tasks. In this paper, we address the problem of image dehazing by proposing a dehazing netwo... 详细信息
来源: 评论
Pricing Models for Sensor-Cloud
Pricing Models for Sensor-Cloud
收藏 引用
IEEE International Conference on Cloud Computing technology and Science (CloudCom)
作者: Chunsheng Zhu Victor C. M. Leung Edith C.-H. Ngai Laurence T. Yang Lei Shu Xiuhua Li Department of Electrical and Computer Engineering The University of British Columbia Canada Department of Information Technology Uppsala University Sweden Department of Computer Science St. Francis Xavier University Canada Guangdong Provincial Key Lab. of Petrochemical Equipment Fault Diagnosis Guangdong University of Petrochemical Technology China
Incorporating ubiquitous wireless sensor networks (WSNs) and powerful cloud computing (CC), Sensor-Cloud (SC) is attracting growing attention from both academia and industry. However, pricing for SC is barely explored... 详细信息
来源: 评论
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Han, Boyu Xu, Qianqian Yang, Zhiyong Bao, Shilong Wen, Peisong Jiang, Yangbangyan Huang, Qingming Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Peng Cheng Laboratory China Key Laboratory of Big Data Mining and Knowledge Management CAS China
The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performan... 详细信息
来源: 评论
LasHeR: A large-scale high-diversity benchmark for RGBT tracking
arXiv
收藏 引用
arXiv 2021年
作者: Li, Chenglong Xue, Wanlin Jia, Yaqing Qu, Zhichen Luo, Bin Tang, Jin Sun, Dengdi Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Artificial Intelligence Anhui University Hefei230601 China Information Materials and Intelligent Sensing Laboratory of Anhui Province Key Lab of Intelligent Computing and Signal Processing of Ministry of Education Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China
RGBT tracking receives a surge of interest in the computer vision community, but this research field lacks a large-scale and high-diversity benchmark dataset, which is essential for both the training of deep RGBT trac... 详细信息
来源: 评论
DRL-M4MR: An Intelligent Multicast Routing Approach Based on DQN Deep Reinforcement Learning in SDN
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Chenwei Ye, Miao Xue, Xingsi Lv, Jianhui Jiang, Qiuxiang Wang, Yong School of Information and Communication Guilin University of Electronic Technology Guilin541004 China Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing Guilin University of Electronic Technology Guilin541004 China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fujian Fuzhou350118 China Peng Cheng Lab. Guangdong Shenzhen518038 China School of Computer Science and Information Security Guilin University of Electronic Technology Guilin541004 China
Traditional multicast routing methods have some problems in constructing a multicast tree, such as limited access to network state information, poor adaptability to dynamic and complex changes in the network, and infl... 详细信息
来源: 评论
Fast Semantic Preserving Hashing for Large-Scale Cross-Modal Retrieval
Fast Semantic Preserving Hashing for Large-Scale Cross-Modal...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Xingzhi Wang Xin Liu Shujuan Peng Yiu-ming Cheung Zhikai Hu Nannan Wang Dept. of Comput. Sci. & Fujian Key Lab. of Big Data Intelligence and Security Huaqiao University Xiamen China State Key Lab. of Integrated Services Networks & School of Telecommun. Eng. Xidian University Xi’an China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou China Dept. of Comput. Sci. and Institute of Research and Continuing Education HK Baptist University Hong Kong SAR China
Most Cross-modal hashing methods do not sufficiently exploit the discrimination power of semantic information when learning hash codes, while often involving time-consuming training procedures for large-scale dataset....
来源: 评论
HF-Mid: A Hybrid Framework of Network Intrusion Detection for Multi-type and Imbalanced Data
HF-Mid: A Hybrid Framework of Network Intrusion Detection fo...
收藏 引用
IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)
作者: Weidong Zhou Tianbo Wang Guotao Huang Xiaopeng Liang Chunhe Xia Xiaojian Li Beijing Key Lab. of Network Technology Beihang University Beijing China School of Cyber Science and Technology Beihang University Beijing China Shanghai Key Laboratory of Computer Software Evaluating and Testing Shanghai China Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing Guangxi Normal University Guilin China College of Computer Science and Information Technology Guangxi Normal University Guilin China
The data-driven deep learning methods have brought significant progress and potential to intrusion detection. However, there are two thorny problems caused by the characteristics of intrusion data: "multi-type fe... 详细信息
来源: 评论
FedDLM: A Fine-Grained Assessment Scheme for Risk of Sensitive information Leakage in Federated Learning-based Android Malware Classifier
FedDLM: A Fine-Grained Assessment Scheme for Risk of Sensiti...
收藏 引用
IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)
作者: Changnan Jiang Chunhe Xia Chen Chen Huacheng Li Tianbo Wang Xiaojian Li Beijing Key Lab. of Network Technology Beihang University Beijing China Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing Guangxi Normal University Guilin China School of Cyber Science and Technology Beihang University Beijing China Shanghai Key Laboratory of Computer Software Evaluating and Testing Shanghai China College of Computer Science and Information Technology Guangxi Normal University Guilin China
In the traditional centralized Android malware classification framework, privacy concerns arise as it requires collecting users’ app samples containing sensitive information directly. To address this problem, new cla... 详细信息
来源: 评论