咨询与建议

限定检索结果

文献类型

  • 142 篇 会议
  • 59 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 202 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 155 篇 工学
    • 110 篇 计算机科学与技术...
    • 90 篇 软件工程
    • 37 篇 信息与通信工程
    • 24 篇 控制科学与工程
    • 18 篇 化学工程与技术
    • 17 篇 生物工程
    • 16 篇 电子科学与技术(可...
    • 14 篇 光学工程
    • 11 篇 机械工程
    • 10 篇 电气工程
    • 10 篇 农业工程
    • 9 篇 生物医学工程(可授...
    • 7 篇 动力工程及工程热...
    • 7 篇 网络空间安全
    • 5 篇 仪器科学与技术
    • 5 篇 交通运输工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 环境科学与工程(可...
  • 86 篇 理学
    • 55 篇 数学
    • 19 篇 生物学
    • 18 篇 物理学
    • 16 篇 化学
    • 13 篇 统计学(可授理学、...
    • 8 篇 系统科学
  • 48 篇 管理学
    • 25 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 12 篇 农学
    • 10 篇 作物学
  • 7 篇 医学
    • 5 篇 临床医学
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 艺术学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 10 篇 semantics
  • 7 篇 support vector m...
  • 6 篇 training
  • 5 篇 image segmentati...
  • 5 篇 accuracy
  • 5 篇 privacy
  • 3 篇 trees (mathemati...
  • 3 篇 educational inst...
  • 3 篇 convolution
  • 3 篇 vectors
  • 3 篇 data mining
  • 3 篇 computational mo...
  • 3 篇 syntactics
  • 3 篇 feature extracti...
  • 3 篇 natural language...
  • 3 篇 malware
  • 3 篇 labeling
  • 3 篇 forecasting
  • 3 篇 image reconstruc...
  • 3 篇 adaptation model...

机构

  • 15 篇 school of comput...
  • 11 篇 key lab. of inte...
  • 9 篇 school of comput...
  • 9 篇 peng cheng labor...
  • 8 篇 school of cyber ...
  • 8 篇 beijing key lab....
  • 8 篇 guangxi collabor...
  • 8 篇 key laboratory o...
  • 6 篇 provincial key l...
  • 6 篇 school of cyber ...
  • 6 篇 shanghai key lab...
  • 5 篇 jiangsu provinci...
  • 5 篇 school of inform...
  • 4 篇 jiangsu provinci...
  • 4 篇 institute of inf...
  • 4 篇 first-imaging te...
  • 4 篇 key lab. of inte...
  • 4 篇 school of inform...
  • 4 篇 school of comput...
  • 4 篇 school of comput...

作者

  • 14 篇 kong fang
  • 13 篇 zhu qiaoming
  • 11 篇 zhou guodong
  • 8 篇 huang qingming
  • 8 篇 xu qianqian
  • 7 篇 chunhe xia
  • 7 篇 tianbo wang
  • 7 篇 cao xiaochun
  • 6 篇 yang zhiyong
  • 6 篇 huang chongwen
  • 5 篇 chen chen
  • 5 篇 li peifeng
  • 4 篇 li yang
  • 4 篇 qian longhua
  • 4 篇 yang bo
  • 4 篇 yuen chau
  • 4 篇 zhang chao
  • 4 篇 xizhao luo
  • 4 篇 yanqin zhu
  • 4 篇 chen yang

语言

  • 196 篇 英文
  • 5 篇 中文
  • 2 篇 其他
检索条件"机构=Provincial Key Lab. for Computer Information Processing Technology"
202 条 记 录,以下是21-30 订阅
排序:
Research on cross-document coreference of Chinese person name
Research on cross-document coreference of Chinese person nam...
收藏 引用
2011 International Conference on Asian Language processing, IALP 2011
作者: Ni, Ji Kong, Fang Li, Peifeng Zhu, Qiaoming JiangSu Provincial Key Lab. for Computer Information Processing Technology Soochow University Suzhou China School of Computer Science and Technology Soochow University Suzhou China
In reality, different persons often have the same person name. The Person Cross Document Co-reference Resolution is a task, which requires that all and only the textual mentions of an entity of type Person be individu... 详细信息
来源: 评论
Research of noun phrase coreference resolution
Research of noun phrase coreference resolution
收藏 引用
2011 International Conference on Asian Language processing, IALP 2011
作者: Gao, Junwei Kong, Fang Li, Peifeng Zhu, Qiaoming JiangSu Provincial Key Lab. for Computer Information Processing Technology Soochow University Suzhou China School of Computer Science and Technology Soochow University Suzhou China
Coreference resolution is an important subtask in natural language processing systems. The process of it is to find whether two expressions in natural language refer to the same entity in the world. Machine learning a... 详细信息
来源: 评论
Towards termination criteria of ant colony optimization
Towards termination criteria of ant colony optimization
收藏 引用
3rd International Conference on Natural Computation, ICNC 2007
作者: Lv, Qiang Xia, Oyan School of Computer Science and Technology Suzhou University Suzhou Jiangsu 215006 China Provincial Key Lab. for Computer Information Processing Technology Suzhou Jiangsu 215006 China
Ant colony optimization (ACO for short) has been proved a successful meta-heuristic by a huge of empirical studies. This paper discusses the termination criteria of ACO and therefore provides research ideas to other m... 详细信息
来源: 评论
Wireless Service Prediction Algorithm in Mobile Social Environment  2
Wireless Service Prediction Algorithm in Mobile Social Envir...
收藏 引用
2017 IEEE 2nd International Conference on Big Data Analysis(ICBDA 2017)
作者: Hui Zhang Min Wang Jiangsu Key Lab of Wireless Communications Nanjing University of Posts and Telecommunications Provincial Key Laboratory for Computer Information Processing Technology Soochow University
First,according to characteristics of mobile social environment,by using optimization models based on similarity degree and interaction degree respectively,the optimal correlated users can be selected for analyzing tw... 详细信息
来源: 评论
Classification rules mining based on SOFM networks
Classification rules mining based on SOFM networks
收藏 引用
MIPPR 2005: Geospatial information, Data Mining, and Applications
作者: Yao, Min Jiang, Zhiwei Shen, Bin College of Computer Zhejiang University Hangzhou 310027 China Provincial Key Lab. for Computer Information Processing Technology in Jiangsu Suzhou University Suzhou 215006 China
Self-organization feature mapping (SOFM) networks have strong ability for self-learning and self-adaptive. According to the characteristics of human thought, this paper constructed a kind of combined criterion, which ... 详细信息
来源: 评论
An unsupervised discriminative random vector functional link network for efficient data clustering  4
An unsupervised discriminative random vector functional link...
收藏 引用
4th International Conference on Pattern Recognition and Artificial Intelligence, PRAI 2021
作者: Zhang, Yikai Zhu, Qi Peng, Yong Kong, Wanzeng School of Computer Science and Technology Hangzhou Dianzi University Hangzhou310018 China Provincial Key Lab. for Computer Information Processing Technology Soochow University Suzhou215123 China
Random Vector Functional Link (RVFL) is a single hidden layer feed forward network which can be trained with non-iterative learning methods. Concretely, the input weights and hidden biases in RVFL can be randomly gene... 详细信息
来源: 评论
Dependency tree-based anaphoricity determination for coreference resolution
Dependency tree-based anaphoricity determination for corefer...
收藏 引用
International Conference on Asian Language processing
作者: Kong, Fang Zhou, Jianmei Zhou, Guodong Zhu, Qiaoming JiangSu Provincial Key Lab. for Computer Information Processing Technology China School of Computer Science and Technology Soochow University Suzhou China Computer Science and Technology School NanTong University NanTong China
This paper proposes a new scheme to determine the tree span structure for tree kernel-based anaphoricity determination in coreference resolution. Given a sentence and current mention, it gets all the dependencies, enc... 详细信息
来源: 评论
Dependency tree-based SRL with proper pruning and extensive feature engineering
Dependency tree-based SRL with proper pruning and extensive ...
收藏 引用
12th Conference on Computational Natural Language Learning, CoNLL 2008
作者: Wang, Hongling Wang, Honglin Zhou, Guodong Zhu, Qiaoming Jiang Su Provincial Key Lab for Computer Information Processing Technology School of Computer Science and Technology Soochow University Suzhou 215006 China
This paper proposes a dependency tree-based SRL system with proper pruning and extensive feature engineering. Official evaluation on the CoNLL 2008 shared task shows that our system achieves 76.19 in lab.led macro F1 ... 详细信息
来源: 评论
Context-Sensitive Convolution Tree Kernel for Pronoun Resolution  3
Context-Sensitive Convolution Tree Kernel for Pronoun Resolu...
收藏 引用
3rd International Joint Conference on Natural Language processing, IJCNLP 2008
作者: Zhou, GuoDong Kong, Fang Zhu, Qiaoming JiangSu Provincial Key Lab for Computer Information Processing Technology School of Computer Science and Technology Soochow Univ. Suzhou215006 China
This paper proposes a context-sensitive convolution tree kernel for pronoun resolution. It resolves two critical problems in previous researches in two ways. First, given a parse tree and a pair of an anaphor and an a... 详细信息
来源: 评论
Semi-Supervised Learning for Relation Extraction  3
Semi-Supervised Learning for Relation Extraction
收藏 引用
3rd International Joint Conference on Natural Language processing, IJCNLP 2008
作者: Zhou, Guo Dong Li, Jun Hui Qian, Long Hua Zhu, Qiaoming Jiangsu Provincial Key Lab for Computer Information Processing Technology School of Computer Science and Technology Soochow Univ. Suzhou215006 China
This paper proposes a semi-supervised learning method for relation extraction. Given a small amount of lab.led data and a large amount of unlab.led data, it first bootstraps a moderate number of weighted support vecto... 详细信息
来源: 评论