咨询与建议

限定检索结果

文献类型

  • 3,574 篇 会议
  • 2,501 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 6,076 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,048 篇 工学
    • 2,781 篇 计算机科学与技术...
    • 2,295 篇 软件工程
    • 1,033 篇 信息与通信工程
    • 492 篇 电气工程
    • 469 篇 生物工程
    • 450 篇 电子科学与技术(可...
    • 424 篇 控制科学与工程
    • 385 篇 光学工程
    • 295 篇 生物医学工程(可授...
    • 287 篇 机械工程
    • 257 篇 化学工程与技术
    • 204 篇 仪器科学与技术
    • 137 篇 材料科学与工程(可...
    • 136 篇 网络空间安全
    • 135 篇 动力工程及工程热...
    • 110 篇 建筑学
    • 105 篇 交通运输工程
  • 2,201 篇 理学
    • 1,191 篇 数学
    • 658 篇 物理学
    • 526 篇 生物学
    • 362 篇 统计学(可授理学、...
    • 271 篇 化学
    • 165 篇 系统科学
  • 1,062 篇 管理学
    • 567 篇 图书情报与档案管...
    • 538 篇 管理科学与工程(可...
    • 193 篇 工商管理
  • 242 篇 医学
    • 211 篇 临床医学
    • 182 篇 基础医学(可授医学...
    • 118 篇 药学(可授医学、理...
  • 152 篇 法学
    • 120 篇 社会学
  • 84 篇 教育学
  • 78 篇 农学
  • 51 篇 经济学
  • 21 篇 军事学
  • 18 篇 文学
  • 11 篇 艺术学
  • 5 篇 哲学

主题

  • 274 篇 feature extracti...
  • 237 篇 semantics
  • 170 篇 training
  • 153 篇 accuracy
  • 135 篇 computational mo...
  • 107 篇 deep learning
  • 106 篇 convolution
  • 92 篇 data mining
  • 85 篇 image segmentati...
  • 83 篇 robustness
  • 82 篇 object detection
  • 82 篇 federated learni...
  • 82 篇 data models
  • 78 篇 visualization
  • 73 篇 optimization
  • 71 篇 contrastive lear...
  • 66 篇 convolutional ne...
  • 64 篇 neural networks
  • 64 篇 predictive model...
  • 63 篇 transformers

机构

  • 222 篇 key laboratory o...
  • 209 篇 shandong provinc...
  • 188 篇 hubei province k...
  • 150 篇 school of inform...
  • 143 篇 key laboratory o...
  • 142 篇 school of comput...
  • 116 篇 college of compu...
  • 104 篇 provincial key l...
  • 98 篇 fujian provincia...
  • 90 篇 shandong provinc...
  • 75 篇 national key lab...
  • 75 篇 university of ch...
  • 72 篇 peng cheng labor...
  • 72 篇 shandong provinc...
  • 62 篇 hubei province k...
  • 61 篇 shanghai key lab...
  • 61 篇 school of comput...
  • 61 篇 shanghai key lab...
  • 57 篇 shandong provinc...
  • 52 篇 fujian provincia...

作者

  • 61 篇 li zuoyong
  • 57 篇 huang qingming
  • 53 篇 zhaohui li
  • 48 篇 li zhaohui
  • 44 篇 li chenglong
  • 40 篇 zhang fuquan
  • 34 篇 shen linlin
  • 32 篇 fan li
  • 32 篇 tang jin
  • 30 篇 guo di
  • 30 篇 boxin shi
  • 30 篇 wang wei
  • 30 篇 feng rui
  • 29 篇 zuoyong li
  • 29 篇 yang zhiyong
  • 29 篇 li wei
  • 28 篇 xiaoming wu
  • 26 篇 wang xiao
  • 25 篇 liu yang
  • 25 篇 gao guanglai

语言

  • 5,216 篇 英文
  • 724 篇 其他
  • 158 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Provincial Key Laboratory of Computer Information Processing Technology"
6076 条 记 录,以下是1331-1340 订阅
排序:
Ascl: Accelerating Semi-Supervised Learning Via Contrastive Learning
SSRN
收藏 引用
SSRN 2024年
作者: Liu, Haixiong Li, Zuoyong Wu, Jiawei Zeng, Kun Hu, Rong Zeng, Wei Fujian Provincial Key Laboratory of Big Data Mining and Applications School of Computer Science and Mathematics Fujian University of Technology Fuzhou350118 China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control College of Computer and Data Science Minjiang University Fuzhou350121 China School of Intelligent Systems Engineering Shenzhen Campus of Sun Yat-sen University Guangdong Shenzhen518107 China The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions Wuyi University Wuyishan354300 China School of Physics and Mechanical and Electrical Engineering Longyan University Longyan364012 China
SSL(Semi-supervised learning) is widely used in machine learning, which leverages labeled and unlabeled data to improve model performance. SSL aims to optimize class mutual information, but noisy pseudo-labels introdu... 详细信息
来源: 评论
Attention information Fusion Emotion Analysis Model Based on BiLSTM-BERT
Attention Information Fusion Emotion Analysis Model Based on...
收藏 引用
Consumer Electronics and computer Engineering (ICCECE), 2021 IEEE International Conference on
作者: Zhi-Wei Cheng Shun-Xin Li Department of Computer Science and Technology Wuhan University of Science and Technology Wuhan China Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial Wuhan University of Science and Technology Wuhan China
Aiming at the problem that most sentiment analysis methods do not focus on the weight fusion of local context and global context information and the important information in fusion features is not prominent, AIFM-BB (...
来源: 评论
Dynamic Disentangled Fusion Network for RGBT Tracking
arXiv
收藏 引用
arXiv 2024年
作者: Li, Chenglong Wang, Tao Ding, Zhaodong Xiao, Yun Tang, Jin Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Artificial Intelligence Anhui University Hefei230601 China Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China
RGBT tracking usually suffers from various challenging factors of low resolution, similar appearance, extreme illumination, thermal crossover and occlusion, to name a few. Existing works often study complex fusion mod... 详细信息
来源: 评论
Two-pupil optical heterodyne scanning holographic system with highpass filtering pupils
Two-pupil optical heterodyne scanning holographic system wit...
收藏 引用
Frontiers in Optics, FiO 2022
作者: Yao, Yongwei Zhang, Yaping Poon, Ting-Chung Yunnan Provincial Key Laboratory of Modern Information Optics Kunming University of Science and Technology Yunnan Kunming650500 China Bradley Department of Electrical and Computer Engineering Virginia Tech BlacksburgVA24061 United States
We propose the use of highpass filtering pupils to achieve edge extraction in a two-pupil optical heterodyne scanning holographic system. Preliminary simulation results have shown an effective edge extraction. © ...
来源: 评论
Remote Sensing Images Semantic Segmentation Method Based on Improved Nested UNet
Remote Sensing Images Semantic Segmentation Method Based on ...
收藏 引用
2022 International Conference on Geographic information and Remote Sensing technology, GIRST 2022
作者: Li, Zhongyu Liu, Yang Kuang, Yin Wang, Huajun Liu, Cheng College of Geophysics Chengdu University of Technology Chengdu610059 China College of Computer Science Chengdu Normal University Chengdu611130 China Key Laboratory of interior Layout optimization and Security Institutions of Higher Education of Sichuan Province Sichuan Chengdu611130 China Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan Chengdu University Chengdu610106 China Artificial Intelligence Key Laboratory of Sichuan Province Zigong643000 China
With the development of remote sensing technology, remote sensing images of buildings are of great significance in urban planning, disaster response, and other directions. When we use a neural network containing batch... 详细信息
来源: 评论
DBSSL: A Scheme to Detect Backdoor Attacks in Self-Supervised Learning Models
收藏 引用
IEEE Transactions on Dependable and Secure Computing 2025年
作者: Huang, Yuxian Yang, Geng Yuan, Dong Yu, Shui Nanjing University of Posts and Telecommunication College of Computer Science and Software China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing China University of Sydney School of Electrical and Information Engineering Australia University of Technology Sydney School of Computer Science Australia
Recently, self-supervised learning has garnered significant attention for its ability to extract high-quality features from unlabeled data. However, existing research indicates that backdoor attacks can pose significa... 详细信息
来源: 评论
TRAIL: Trust-Aware Client Scheduling for Semi-Decentralized Federated Learning  39
TRAIL: Trust-Aware Client Scheduling for Semi-Decentralized ...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Hu, Gangqiang Lu, Jianfeng Han, Jianmin Cao, Shuqin Liu, Jing Fu, Hao School of Computer Science and Technology Zhejiang Normal University China School of Computer Science and Technology Wuhan University of Science and Technology China Key Laboratory of Social Computing and Cognitive Intelligence Dalian University of Technology Ministry of Education China Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System Wuhan University of Science and Technology China
Due to the sensitivity of data, Federated Learning (FL) is employed to enable distributed machine learning while safeguarding data privacy and accommodating the requirements of various devices. However, in the context... 详细信息
来源: 评论
CBAT-ASG: Adversarial Sample Generation Method Based on CBA-Transformer
CBAT-ASG: Adversarial Sample Generation Method Based on CBA-...
收藏 引用
International Conference on computer Supported Cooperative Work in Design
作者: Lijuan Xu Zhiang Yao Haoran Li Chengcai Diao Guangrun Zhou Dawei Zhao Hua Ding Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center (National Supercomputer Center in Jinan) Qilu University of Technology (Shandong Academy of Sciences) Shandong Provincial Key Laboratory of Industrial Network and Information System Security Shandong Fundamental Research Center for Computer Science Jinan China
In recent years, machine learning models have become prevalent for anomaly detection in industrial control systems (ICS). However, their vulnerability to adversarial samples poses a significant security threat. Curren... 详细信息
来源: 评论
Simplifying Control Mechanism in Text-to-Image Diffusion Models  39
Simplifying Control Mechanism in Text-to-Image Diffusion Mod...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Feng, Zhida Chen, Li Sun, Yuenan Liu, Jiaxiang Feng, Shikun School of Computer Science and Technology Wuhan University of Science and Technology China Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System Wuhan University of Science and Technology China Baidu Inc China
ControlNet has significantly advanced controllable image generation by integrating dense conditions (such as depth and canny edges) with text-to-image diffusion models. However, ControlNet’s integration requires an a... 详细信息
来源: 评论
Few-Shot Class-Incremental Semantic Segmentation via Pseudo-Labeling and Knowledge Distillation
Few-Shot Class-Incremental Semantic Segmentation via Pseudo-...
收藏 引用
information Science, Parallel and Distributed Systems (ISPDS), International Conference on
作者: Chengjia Jiang Tao Wang Sien Li Jinyang Wang Shirui Wang Antonios Antoniou Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang University Fuzhou China The Key Laboratory of Cognitive Computing and Intelligent Information Processing Fujian Education Institutions Wuyi University Wuyishan China College of Computer and Data Science Fuzhou University Fuzhou China Department of Computer Science and Engineering European University Cyprus Nicosia Cyprus
We address the problem of learning new classes for semantic segmentation models from few examples, which is challenging because of the following two reasons. Firstly, it is difficult to learn from limited novel data t...
来源: 评论