咨询与建议

限定检索结果

文献类型

  • 3,534 篇 会议
  • 2,549 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 6,084 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,100 篇 工学
    • 2,830 篇 计算机科学与技术...
    • 2,301 篇 软件工程
    • 1,050 篇 信息与通信工程
    • 515 篇 电气工程
    • 472 篇 生物工程
    • 468 篇 控制科学与工程
    • 458 篇 电子科学与技术(可...
    • 383 篇 光学工程
    • 298 篇 生物医学工程(可授...
    • 284 篇 机械工程
    • 256 篇 化学工程与技术
    • 202 篇 仪器科学与技术
    • 137 篇 动力工程及工程热...
    • 137 篇 网络空间安全
    • 134 篇 材料科学与工程(可...
    • 110 篇 建筑学
    • 106 篇 交通运输工程
  • 2,210 篇 理学
    • 1,192 篇 数学
    • 661 篇 物理学
    • 525 篇 生物学
    • 363 篇 统计学(可授理学、...
    • 270 篇 化学
    • 166 篇 系统科学
  • 1,065 篇 管理学
    • 567 篇 图书情报与档案管...
    • 538 篇 管理科学与工程(可...
    • 191 篇 工商管理
  • 249 篇 医学
    • 211 篇 临床医学
    • 186 篇 基础医学(可授医学...
    • 117 篇 药学(可授医学、理...
  • 148 篇 法学
    • 117 篇 社会学
  • 81 篇 教育学
  • 76 篇 农学
  • 51 篇 经济学
  • 21 篇 军事学
  • 18 篇 文学
  • 11 篇 艺术学
  • 5 篇 哲学

主题

  • 262 篇 feature extracti...
  • 234 篇 semantics
  • 164 篇 training
  • 131 篇 accuracy
  • 121 篇 computational mo...
  • 111 篇 deep learning
  • 105 篇 convolution
  • 87 篇 data mining
  • 84 篇 image segmentati...
  • 78 篇 object detection
  • 78 篇 data models
  • 76 篇 visualization
  • 70 篇 contrastive lear...
  • 70 篇 robustness
  • 70 篇 convolutional ne...
  • 66 篇 optimization
  • 64 篇 predictive model...
  • 63 篇 neural networks
  • 61 篇 federated learni...
  • 59 篇 face recognition

机构

  • 210 篇 shandong provinc...
  • 192 篇 key laboratory o...
  • 187 篇 hubei province k...
  • 143 篇 key laboratory o...
  • 141 篇 school of comput...
  • 141 篇 school of inform...
  • 116 篇 college of compu...
  • 104 篇 provincial key l...
  • 99 篇 fujian provincia...
  • 85 篇 shandong provinc...
  • 76 篇 national key lab...
  • 74 篇 university of ch...
  • 73 篇 peng cheng labor...
  • 71 篇 shandong provinc...
  • 63 篇 school of comput...
  • 62 篇 hubei province k...
  • 62 篇 shanghai key lab...
  • 60 篇 shanghai key lab...
  • 52 篇 fujian provincia...
  • 52 篇 school of comput...

作者

  • 64 篇 li zuoyong
  • 56 篇 huang qingming
  • 52 篇 zhaohui li
  • 51 篇 li zhaohui
  • 46 篇 li chenglong
  • 44 篇 zhang fuquan
  • 34 篇 tang jin
  • 33 篇 li wei
  • 32 篇 fan li
  • 32 篇 shen linlin
  • 31 篇 guo di
  • 31 篇 wang wei
  • 30 篇 zuoyong li
  • 30 篇 boxin shi
  • 29 篇 feng rui
  • 28 篇 yang zhiyong
  • 27 篇 wang xiao
  • 25 篇 liu yang
  • 25 篇 gao guanglai
  • 25 篇 li fan

语言

  • 5,516 篇 英文
  • 432 篇 其他
  • 145 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Provincial Key Laboratory of Computer Information Processing Technology"
6084 条 记 录,以下是4101-4110 订阅
排序:
Deep learning for depression recognition with audiovisual cues: A review
arXiv
收藏 引用
arXiv 2021年
作者: He, Lang Niu, Mingyue Tiwari, Prayag Marttinen, Pekka Su, Rui Jiang, Jiewei Guo, Chenguang Wang, Hongyu Ding, Songtao Wang, Zhongmin Pan, Xiaoying Dang, Wei School of Computer Science and Technology Xi'an University of Posts and Telecommunications Shaanxi Xi'an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi'an University of Posts and Telecommunications Shaanxi Xi'an710121 China Beijing100190 China Beijing100049 China Department of Computer Science Aalto University Espoo Finland School of Foreign Languages Northwest University Shaanxi Xi'an China School of Electronic Engineering Xi'an University of Posts and Telecommunications Xi'an China School of Electronics and Information Northwestern Polytechnical University Shaanxi Xi'an China Shaanxi Mental Health Center Shaanxi Xi'an710061 China
With the acceleration of the pace of work and life, people have to face more and more pressure, which increases the possibility of suffering from depression. However, many patients may fail to get a timely diagnosis d... 详细信息
来源: 评论
Design and Implementation of Campus Service System Platform Based on Big Data
Design and Implementation of Campus Service System Platform ...
收藏 引用
IEEE International Conference on Computational Science and Engineering, CSE
作者: Honglei Zheng Hong Guo College of Computer Science and Technology Wuhan University of Science and Technology Wuhan China College of Computer Science and Technology Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System Wuhan China
In recent years, major universities have attached great importance to digital information construction, but the survey found that there are still areas for improvement in the design of the content blocks that students... 详细信息
来源: 评论
A Novel Multi-Agent Deep Reinforcement Learning Approach
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1757卷
作者: Dong Yin Zhe Zhao Yinglong Dai Han Long College of Intelligence Science and Technology National University of Defense Technology Changsha 410073 China College of Liberal Arts and Sciences National University of Defense Technology Changsha 410073 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha 410081 China
Borrowing the power of deep neural networks, deep reinforcement learning achieved big success in games, and it becomes a popular method to solve the sequential decision-making problems. However, the success is still r...
来源: 评论
Opacity of Nondeterministic Transition Systems: A (Bi)Simulation Relation Approach
Opacity of Nondeterministic Transition Systems: A (Bi)Simula...
收藏 引用
作者: Zhang, Kuize Yin, Xiang Zamani, Majid ACCESS Linnaeus Center School of Electrical Engineering KTH Royal Institute of Technology Stockholm10044 Sweden Department of Automation Key Laboratory of System Control and Information Processing Shanghai Jiao Tong University Shanghai200240 China Computer Science Department University of Colorado Boulder BoulderCO80309 United States
In this paper, we propose several opacity-preserving (bi)simulation relations for nondeterministic transition systems (NTSs) in terms of initial-state opacity, current-state opacity, K-step opacity, and infinite-step ... 详细信息
来源: 评论
Discriminative Feature Representation for Person Re-identification by Batch-contrastive Loss  10
Discriminative Feature Representation for Person Re-identifi...
收藏 引用
10th Asian Conference on Machine Learning, ACML 2018
作者: Zhang, Guopeng Xu, Jinhua Department of Computer Science and Technology Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai200062 China
In the past few years, person re-identification (reID) has developed rapidly due to the success of deep convolutional neural networks. The softmax loss function is an important component for learning discriminative fe... 详细信息
来源: 评论
ECNU at SemEval-2018 Task 1: Emotion Intensity Prediction Using Effective Features and Machine Learning Models  12
ECNU at SemEval-2018 Task 1: Emotion Intensity Prediction Us...
收藏 引用
12th International Workshop on Semantic Evaluation, SemEval 2018, co-located with the 16th Annual Conference of the North American Chapter of the
作者: Xu, Huimin Lan, Man Wu, Yuanbin Department of Computer Science and Technology East China Normal University Shanghai China Shanghai Key Laboratory of Multidimensional Information Processing China
In this paper we describe our systems submitted to Semeval 2018 Task 1 "Affect in Tweet" (Mohammad et al., 2018). We participated in all subtasks of English tweets, including emotion intensity classification... 详细信息
来源: 评论
A LSTM approach with sub-word embeddings for mongolian phrase break prediction  27
A LSTM approach with sub-word embeddings for mongolian phras...
收藏 引用
27th International Conference on Computational Linguistics, COLING 2018
作者: Liu, Rui Bao, Feilong Gao, Guanglai Zhang, Hui Wang, Yonghe College of Computer Science Inner Mongolia University Inner Mongolia Key Laboratory of Mongolian Information Processing Technology Hohhot010021 China
In this paper, we first utilize the word embedding that focuses on sub-word units to the Mongolian Phrase Break (PB) prediction task by using Long Short-Term Memory (LSTM) model. Mongolian is an agglutinative language... 详细信息
来源: 评论
Person Re-identification by Mid-level Attribute and Part-based Identity Learning  10
Person Re-identification by Mid-level Attribute and Part-bas...
收藏 引用
10th Asian Conference on Machine Learning, ACML 2018
作者: Zhang, Guopeng Xu, Jinhua Department of Computer Science and Technology Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai200062 China
Existing deep models using attributes usually take global features for identity classification and attribute recognition. However, some attributes exist in local position, such as a hat and shoes, therefore global fea... 详细信息
来源: 评论
ECNU at SemEval-2018 Task 11: Using Deep Learning Method to Address Machine Comprehension Task  12
ECNU at SemEval-2018 Task 11: Using Deep Learning Method to ...
收藏 引用
12th International Workshop on Semantic Evaluation, SemEval 2018, co-located with the 16th Annual Conference of the North American Chapter of the
作者: Sheng, Yixuan Lan, Man Wu, Yuanbin Department of Computer Science and Technology East China Normal University Shanghai China Shanghai Key Laboratory of Multidimensional Information Processing China
This paper describes the system we submitted to the Task 11 in SemEval 2018, i.e., Machine Comprehension using Commonsense Knowledge. Given a passage and some questions that each have two candidate answers, this task ... 详细信息
来源: 评论
Improving Mongolian phrase break prediction by using syllable and morphological embeddings with BiLSTM model  19
Improving Mongolian phrase break prediction by using syllabl...
收藏 引用
19th Annual Conference of the International Speech Communication, INTERSPEECH 2018
作者: Liu, Rui Bao, Feilong Gao, Guanglai Zhang, Hui Wang, Yonghe College of Computer Science Inner Mongolia University Inner Mongolia Key Laboratory of Mongolian Information Processing Technology Hohhot010021 China
In the speech synthesis systems, the phrase break (PB) prediction is the first and most important step. Recently, the state-of-the-art PB prediction systems mainly rely on word embeddings. However this method is not f... 详细信息
来源: 评论