咨询与建议

限定检索结果

文献类型

  • 3,473 篇 会议
  • 2,483 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 5,957 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,981 篇 工学
    • 2,727 篇 计算机科学与技术...
    • 2,265 篇 软件工程
    • 1,032 篇 信息与通信工程
    • 489 篇 电气工程
    • 469 篇 生物工程
    • 444 篇 电子科学与技术(可...
    • 409 篇 控制科学与工程
    • 381 篇 光学工程
    • 294 篇 生物医学工程(可授...
    • 282 篇 机械工程
    • 255 篇 化学工程与技术
    • 201 篇 仪器科学与技术
    • 137 篇 动力工程及工程热...
    • 134 篇 网络空间安全
    • 132 篇 材料科学与工程(可...
    • 110 篇 建筑学
    • 106 篇 交通运输工程
  • 2,184 篇 理学
    • 1,179 篇 数学
    • 654 篇 物理学
    • 521 篇 生物学
    • 358 篇 统计学(可授理学、...
    • 268 篇 化学
    • 166 篇 系统科学
  • 1,056 篇 管理学
    • 562 篇 图书情报与档案管...
    • 536 篇 管理科学与工程(可...
    • 191 篇 工商管理
  • 245 篇 医学
    • 209 篇 临床医学
    • 184 篇 基础医学(可授医学...
    • 117 篇 药学(可授医学、理...
  • 148 篇 法学
    • 117 篇 社会学
  • 81 篇 教育学
  • 76 篇 农学
  • 51 篇 经济学
  • 21 篇 军事学
  • 18 篇 文学
  • 11 篇 艺术学
  • 5 篇 哲学

主题

  • 259 篇 feature extracti...
  • 235 篇 semantics
  • 164 篇 training
  • 131 篇 accuracy
  • 121 篇 computational mo...
  • 105 篇 deep learning
  • 105 篇 convolution
  • 86 篇 data mining
  • 82 篇 image segmentati...
  • 77 篇 object detection
  • 77 篇 data models
  • 76 篇 visualization
  • 71 篇 robustness
  • 69 篇 convolutional ne...
  • 66 篇 optimization
  • 64 篇 predictive model...
  • 63 篇 neural networks
  • 59 篇 face recognition
  • 59 篇 contrastive lear...
  • 58 篇 federated learni...

机构

  • 208 篇 shandong provinc...
  • 187 篇 key laboratory o...
  • 185 篇 hubei province k...
  • 142 篇 key laboratory o...
  • 141 篇 school of inform...
  • 133 篇 school of comput...
  • 116 篇 college of compu...
  • 104 篇 provincial key l...
  • 99 篇 fujian provincia...
  • 88 篇 shandong provinc...
  • 74 篇 national key lab...
  • 73 篇 university of ch...
  • 73 篇 peng cheng labor...
  • 71 篇 shandong provinc...
  • 64 篇 school of comput...
  • 62 篇 shanghai key lab...
  • 59 篇 shanghai key lab...
  • 56 篇 hubei province k...
  • 52 篇 fujian provincia...
  • 52 篇 school of comput...

作者

  • 65 篇 li zuoyong
  • 55 篇 huang qingming
  • 52 篇 zhaohui li
  • 52 篇 li zhaohui
  • 45 篇 zhang fuquan
  • 44 篇 li chenglong
  • 35 篇 tang jin
  • 33 篇 li wei
  • 31 篇 guo di
  • 31 篇 fan li
  • 30 篇 zuoyong li
  • 30 篇 boxin shi
  • 30 篇 shen linlin
  • 29 篇 wang wei
  • 28 篇 feng rui
  • 26 篇 wang xiao
  • 26 篇 yang zhiyong
  • 25 篇 li fan
  • 25 篇 he liang
  • 24 篇 liu yang

语言

  • 5,576 篇 英文
  • 245 篇 其他
  • 143 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Provincial Key Laboratory of Computer Information Processing Technology"
5957 条 记 录,以下是421-430 订阅
排序:
Four-dimensional direct detection receiver enabling Jones-space field recovery with phase and polarization diversity
收藏 引用
Photonics Research 2024年 第3期12卷 399-410页
作者: QI WU YIXIAO ZHU XUEYANG LI HEXUN JIANG CHEN CHENG MENGFAN FU YIKUN ZHANG QUNBI ZHUGE ZHAOHUI LI WEISHENG HU Peng Cheng Laboratory Shenzhen 518055China State Key Laboratory of Advanced Communication Systems and Networks Department of Electronic EngineeringShanghai Jiao Tong UniversityShanghai 200240China School of Electronics and Information Technology and Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems Sun Yat-sen UniversityGuangzhou 510006China
Data centers,the engines of the global Internet,rely on powerful high-speed optical *** optical fiber communication,classic direct detection captures only the intensity of the optical field,while the coherent detectio... 详细信息
来源: 评论
HybridHash: Hybrid Convolutional and Self-Attention Deep Hashing for Image Retrieval
arXiv
收藏 引用
arXiv 2024年
作者: He, Chao Wei, Hongxi School of Computer Science Inner Mongolia University Provincial Key Laboratory of Mongolian Information Processing Technology National and Local Joint Engineering Research Center of Mongolian Information Processing Hohhot China
Deep image hashing aims to map input images into simple binary hash codes via deep neural networks and thus enable effective large-scale image retrieval. Recently, hybrid networks that combine convolution and Transfor... 详细信息
来源: 评论
Spatial-Temporal Semantic Feature Interaction Network for Semantic Change Detection in Remote Sensing Images
收藏 引用
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2025年 18卷 12090-12102页
作者: Zhang, Yuhang Zhang, Wuxia Ding, Songtao Wu, Siyuan Lu, Xiaoqiang Xi'an University of Posts and Telecommunications Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing School of Computer Science and Technology Xi'an710121 China Xi'an University of Technology College of Computer Science and Engineering Shaanxi Xi'an710048 China Fuzhou University College of Physics and Information Engineering Fuzhou350002 China
Semantic Change Detection (SCD) in Remote Sensing Images (RSI) aims to identify changes in the type of Land Cover/Land Use (LCLU) corresponding to changed areas in RSI. The "from-to" information of the acqui... 详细信息
来源: 评论
Building Edge Detection technology from Remote Sensing Image Based on NSCT and Tensor Voting  8
Building Edge Detection Technology from Remote Sensing Image...
收藏 引用
2024 8th International Conference on Machine Vision and information technology, CMVIT 2024
作者: Wu, Yingbin Zhao, Peng Zhou, Mingquan Geng, Shengling Zhang, Dan School of Computer Science Qinghai Normal University Qinghai Xining China School of Mathematics and Information Technology Yuncheng University Shanxi Yuncheng China State Key Laboratory of Tibetan Intelligent Information Processing and Application Qinghai Xining China
An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in r... 详细信息
来源: 评论
An Assisting Education System of Electronic Building Blocks Based on Deep Learning  24
An Assisting Education System of Electronic Building Blocks ...
收藏 引用
2024 7th International Conference on computer information Science and Artificial Intelligence, CISAI 2024
作者: Shi, Zhuo Xu, Ziquan Qiu, Xia He, Haoen Luo, Xiaonan School of Art and Design Guilin University of Electronic Technology Guangxi Guilin China Guangxi Key Laboratory of lmage and Graphic Intelligent Processing Guangxi Guilin China Department of Computer and Information Security University of Guilin Electronic Technology Guangxi Guilin China Department of Guangxi Key Laboratory of Image and Graphic Intelligent Processing University of Guilin Electronic Technology Guangxi Guilin China
It is difficult for children to build electronic building blocks. In order to facilitate users to build building blocks, this paper designs and implements an electronic building block auxiliary system based on machine... 详细信息
来源: 评论
Joint Extraction of Interaction Features and Attention Mechanism Fused with Entity-Relations  36
Joint Extraction of Interaction Features and Attention Mecha...
收藏 引用
36th International Conference on Software Engineering and Knowledge Engineering, SEKE 2024
作者: Su, Lisha Yan, Rong College of Computer Science Inner Mongolia University Inner Mongolia Key Laboratory of Multilingual Artificial Intelligence Technology National & Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian Hohhot010021 China
Joint extraction of entities and relations is an essential task in information extraction. Recently, tagging-based models have gained attention but with poor performance on overlapping triplets, which confronted the i... 详细信息
来源: 评论
Large Model-Based Data Augmentation for Imbalanced Text Classification  5
Large Model-Based Data Augmentation for Imbalanced Text Clas...
收藏 引用
5th International Seminar on Artificial Intelligence, Networking and information technology, AINIT 2024
作者: Zhang, Dawei Mi, Rongxin Zhou, Peiyao Jin, Dawei Zhang, Manman Song, Tianhang School of Computer Science Jiangsu University of Science and Technology Jiangsu Zhenjiang China National Computer Network Emergency Response Technical Team Coordination Center of China Beijing China Key Laboratory of Intelligent Information Processing Beijing China
This study focuses on the application of large models to deal with imbalanced data problems in text classification. In view of the central position of text in web data and the negative impact of class imbalance on cla... 详细信息
来源: 评论
Sub-50-pm displacement sensing via phase-matched metasurface-prism configuration
收藏 引用
Optics Letters 2025年 第12期50卷 3919-3922页
作者: Zhouxin LiangXin GuJiaqi LiLixun WuZhaoxiang ZhuShuqing LinYuhang LinYujie Chen Siyuan Yu State Key Laboratory of Optoelectronic Materials and Technologies Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems School of Electronics and Information Technology Sun Yat-sen University Guangzhou 510275 China
Accurate transverse displacement measurement at the picometer scale is essential for advancing ultraprecision metrology and probing microscopic physical interactions. Here, we demonstrate a high-precision transverse d... 详细信息
来源: 评论
PLIP: Language-Image Pre-training for Person Representation Learning  38
PLIP: Language-Image Pre-training for Person Representation ...
收藏 引用
38th Conference on Neural information processing Systems, NeurIPS 2024
作者: Zuo, Jialong Hong, Jiahao Zhang, Feng Yu, Changqian Zhou, Hanyu Gao, Changxin Sang, Nong Wang, Jingdong National Key Laboratory of Multispectral Information Intelligent Processing Technology School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Skywork AI United States Department of Computer Vision Baidu Inc. China
Language-image pre-training is an effective technique for learning powerful representations in general domains. However, when directly turning to person representation learning, these general pre-training methods suff...
来源: 评论
Deep Graph Convolutional Neural Network based on Adaptive Sampling and Aggregation Strategy  2
Deep Graph Convolutional Neural Network based on Adaptive Sa...
收藏 引用
2nd International Conference on Machine Vision, Image processing and Imaging technology, MVIPIT 2024
作者: Wang, Xueli Zhang, Wei Li, Gege Zhou, Lin Liu, Hongkai Ye, Zhonglin School of Computer Qinghai Normal University Xining810008 China Qinghai Provincial Key Laboratory of Tibetan Information Processing and Machine Translation Xining810008 China Graduate School of Engineering Nagasaki Institute of Applied Science Nagasaki851-0193 Japan
Graph neural networks learn node embeddings by recursively sampling and aggregating nodes in a graph, while existing methods have a fixed pattern of node sampling and aggregation, and usually only consider direct neig... 详细信息
来源: 评论