咨询与建议

限定检索结果

文献类型

  • 3,534 篇 会议
  • 2,549 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 6,084 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,100 篇 工学
    • 2,830 篇 计算机科学与技术...
    • 2,301 篇 软件工程
    • 1,050 篇 信息与通信工程
    • 515 篇 电气工程
    • 472 篇 生物工程
    • 468 篇 控制科学与工程
    • 458 篇 电子科学与技术(可...
    • 383 篇 光学工程
    • 298 篇 生物医学工程(可授...
    • 284 篇 机械工程
    • 256 篇 化学工程与技术
    • 202 篇 仪器科学与技术
    • 137 篇 动力工程及工程热...
    • 137 篇 网络空间安全
    • 134 篇 材料科学与工程(可...
    • 110 篇 建筑学
    • 106 篇 交通运输工程
  • 2,210 篇 理学
    • 1,192 篇 数学
    • 661 篇 物理学
    • 525 篇 生物学
    • 363 篇 统计学(可授理学、...
    • 270 篇 化学
    • 166 篇 系统科学
  • 1,065 篇 管理学
    • 567 篇 图书情报与档案管...
    • 538 篇 管理科学与工程(可...
    • 191 篇 工商管理
  • 249 篇 医学
    • 211 篇 临床医学
    • 186 篇 基础医学(可授医学...
    • 117 篇 药学(可授医学、理...
  • 148 篇 法学
    • 117 篇 社会学
  • 81 篇 教育学
  • 76 篇 农学
  • 51 篇 经济学
  • 21 篇 军事学
  • 18 篇 文学
  • 11 篇 艺术学
  • 5 篇 哲学

主题

  • 262 篇 feature extracti...
  • 234 篇 semantics
  • 164 篇 training
  • 131 篇 accuracy
  • 121 篇 computational mo...
  • 111 篇 deep learning
  • 105 篇 convolution
  • 87 篇 data mining
  • 84 篇 image segmentati...
  • 78 篇 object detection
  • 78 篇 data models
  • 76 篇 visualization
  • 70 篇 contrastive lear...
  • 70 篇 robustness
  • 70 篇 convolutional ne...
  • 66 篇 optimization
  • 64 篇 predictive model...
  • 63 篇 neural networks
  • 61 篇 federated learni...
  • 59 篇 face recognition

机构

  • 210 篇 shandong provinc...
  • 192 篇 key laboratory o...
  • 187 篇 hubei province k...
  • 143 篇 key laboratory o...
  • 141 篇 school of comput...
  • 141 篇 school of inform...
  • 116 篇 college of compu...
  • 104 篇 provincial key l...
  • 99 篇 fujian provincia...
  • 85 篇 shandong provinc...
  • 76 篇 national key lab...
  • 74 篇 university of ch...
  • 73 篇 peng cheng labor...
  • 71 篇 shandong provinc...
  • 63 篇 school of comput...
  • 62 篇 hubei province k...
  • 62 篇 shanghai key lab...
  • 60 篇 shanghai key lab...
  • 52 篇 fujian provincia...
  • 52 篇 school of comput...

作者

  • 64 篇 li zuoyong
  • 56 篇 huang qingming
  • 52 篇 zhaohui li
  • 51 篇 li zhaohui
  • 46 篇 li chenglong
  • 44 篇 zhang fuquan
  • 34 篇 tang jin
  • 33 篇 li wei
  • 32 篇 fan li
  • 32 篇 shen linlin
  • 31 篇 guo di
  • 31 篇 wang wei
  • 30 篇 zuoyong li
  • 30 篇 boxin shi
  • 29 篇 feng rui
  • 28 篇 yang zhiyong
  • 27 篇 wang xiao
  • 25 篇 liu yang
  • 25 篇 gao guanglai
  • 25 篇 li fan

语言

  • 5,516 篇 英文
  • 432 篇 其他
  • 145 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Provincial Key Laboratory of Computer Information Processing Technology"
6084 条 记 录,以下是4361-4370 订阅
排序:
Fast stochastic ordinal embedding with variance reduction and adaptive step size
arXiv
收藏 引用
arXiv 2019年
作者: Ma, Ke Zeng, Jinshan Xiong, Jiechao Xu, Qianqian Cao, Xiaochun Liu, Wei Yao, Yuan School of Computer Science and Technology University of Chinese Academy of Sciences Beijing100049 China Artificial Intelligence Research Center Peng Cheng Laboratory Shenzhen518055 China School of Computer Information Engineering Jiangxi Normal University NanchangJiangxi330022 China Tencent AI Lab Shenzhen Guangdong China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing100093 China Cyberspace Security Research Center Peng Cheng Laboratory Shenzhen518055 China School of Cyber Security University of Chinese Academy of Sciences Beijing100049 China Department of Mathematics and by courtesy Department of Computer Science and Engineering Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
—Learning representation from relative similarity comparisons, often called ordinal embedding, gains rising attention in recent years. Most of the existing methods are based on semi-definite programming (SDP), which ... 详细信息
来源: 评论
Stochastic Link Flow Model for Signalized Traffic Networks with Uncertainty in Demand
收藏 引用
IFAC-PapersOnLine 2018年 第9期51卷 458-463页
作者: Lin, S. Pan, T.L. Lam, W.H.K. Zhong, R.X. Schutter, B. De School of Computer and Control Engineering University of Chinese Academy of Sciences Key Laboratory of System Control and Information Processing Ministry of Education BeijingShanghai China Department of Civil and Structural Engineering The Hong Kong Polytechnic University Hong KongSAR Hong Kong School of Engineering Sun Yat-Sen University Guangzhou China Delft Center for Systems and Control Delft University of Technology Delft Netherlands
In order to investigate the stochastic features in urban traffic dynamics, we propose a Stochastic Link Flow Model (SLFM) for signalized traffic networks with demand uncertainties. In the proposed model, the link traf... 详细信息
来源: 评论
Benchmark Computation of Morphological Complexity in the Functionalized Cahn-Hilliard Gradient Flow
arXiv
收藏 引用
arXiv 2020年
作者: Christlieb, Andrew Promislow, Keith Tan, Zengqiang Wang, Sulin Wetton, Brian Wise, Steven M. Department of Mathematics Michigan State University East LansingMI48824 United States Department of Computational Mathematics Science and Engineering Michigan State University East LansingMI48824 United States School of Science Wuhan University of Technology Wuhan430070 China School of Mathematics Hunan University Changsha410082 China Hunan Provincial Key Laboratory of Intelligent Information Processing and Applied Mathematics Hunan University Changsha410082 China Department of Mathematics The University of British Columbia VancouverBCV6T 1Z2 Canada Department of Mathematics The University of Tennessee KnoxvilleTN37996 United States
Reductions of the self-consistent mean field theory model of amphiphilic molecules in solvent can lead to a singular family of functionalized Cahn-Hilliard (FCH) energies. We modify these energies, mollifying the sing... 详细信息
来源: 评论
Resource allocation method based on combinatorial double auction mechanism in cloud computing
Resource allocation method based on combinatorial double auc...
收藏 引用
IEEE Conference on Industrial Electronics and Applications (ICIEA)
作者: Li Deng Fei Xu Yulin Ren ShengGang Bao Heng He Chao Li College of Computer Science and Technology Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System Wuhan China
Cloud computing integrates kinds of resources into a huge resource pool and provides different types of resource combination in the resource pool to users in the form of service using virtualization technology. The en... 详细信息
来源: 评论
Pixels Matching in No Obvious Feature Area in Binocular Vision Based on Peripheral Feature Points
Pixels Matching in No Obvious Feature Area in Binocular Visi...
收藏 引用
International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)
作者: Renlong Chen Mingjun Liu Xueyan Gong Jinping Li School of Information Science and Engineering Shandong Provincial Key Laboratory of Network Based Intelligent Computing (University of Jinan) Shandong College and University Key Laboratory of Information Processing and Cognitive Computing in 13th Five-year Jinan China Qilu Institute of Technology Shandong Provincial Key Laboratory of Network Based Intelligent Computing (University of Jinan) Shandong College and University Key Laboratory of Information Processing and Cognitive Computing in 13th Five-year Jinan China
In binocular vision, the pixel matching of no obvious feature refers to the matching of pixels in the area where the gray value does not change significantly or in the area where there is no significant gradient chang... 详细信息
来源: 评论
DABC-Net for robust pneumonia segmentation and prediction of COVID-19 progression on chest CT scans
Research Square
收藏 引用
Research Square 2020年
作者: Zhang, Xiao-Yong Yu, Ziqi Han, Xiaoyang Zhao, Botao Zhuo, Yaoyao Ren, Yan Xue, Xiangyang Lamm, Lorenz Feng, Jianfeng Marr, Carsten Shan, Fei Peng, Tingying Institute of Science and Technology for Brain-Inspired Intelligence Fudan University Shanghai200433 China Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Ministry of Education Shanghai200433 China Department of Radiology Shanghai Public Health Clinical Center Fudan University Shanghai201508 China Department of Radiology Huashan Hospital Fudan University Shanghai200433 China Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China Institute of Computational Biology Helmholtz Zentrum München Ingolstädter Landstraße 1 D-85764 Germany Helmholtz AI Helmholtz Zentrum München Ingolstädter Landstraße 1 NeuherbergD-85764 Germany
Currently, reliable, robust and ready-to-use CT-based tools for prediction of COVID-19 progression are still lacking. To address this problem, we present DABC-Net, a novel deep learning (DL) tool that combines a 2D U-... 详细信息
来源: 评论
Reform and Construction of computer Major on Local Colleges under the Background of Emerging Engineering Education
Reform and Construction of Computer Major on Local Colleges ...
收藏 引用
3rd International Conference on Politics,Economics and Law(ICPEL 2018)
作者: Yaojie Chen Xin Yuan Hai Zhou Zhijing Wan School of Computer Science and Technology Wuhan university of Science and Technology Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System
In recent years, with the accelerated development of the global new economy, the country desperately need the support of new engineering talents, which raises higher requirements for the development of higher educatio... 详细信息
来源: 评论
Neural aesthetic image reviewer
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Wenshan Yang, Su Zhang, Weishan Zhang, Jiulong Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University China University of Petroleum Xi'an University of Technology
Recently, there is a rising interest in perceiving image aesthetics. The existing works deal with image aesthetics as a classification or regression problem. To extend the cognition from rating to reasoning, a deeper ... 详细信息
来源: 评论
Application of Deep Learning in Software Security Detection
Application of Deep Learning in Software Security Detection
收藏 引用
2018 International Conference on Computational Science and Engineering(ICCSE 2018)
作者: Lin Li Ying Ding Jiacheng Mao College of Computer Science and Technology Wuhan University of Science and Technology Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System
Machine learning is knowledge of learning rules from data through computational models and algorithms. It has been applied in various fields that require mining rules from complex data, and has become one of the most ... 详细信息
来源: 评论
Controlling Expressivity using Input Codes in Neural Network based TTS
Controlling Expressivity using Input Codes in Neural Network...
收藏 引用
Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia)
作者: Xiaolian Zhu Lei Xie Xiao Chen Xiaoyan Lou Xuan Zhu Xingjun Tan Shaanxi Provincial Key Laboratory of Speech and Image Information Processing School of Computer Science Northwestern Polytechnical University Xi’an Hebei University of Economics and Business Shijiazhuang China Shaanxi Provincial Key Laboratory of Speech and Image Information Processing School of Computer Science Northwestern Polytechnical University Xi’an China Language Computing Lab Samsung R&D Institute of China Beijing China
This paper presents a study on the use of input codes in the neural network acoustic modeling for expressive TTS. Specifically, we use different kinds of input codes, augmented with the linguistic features, as the inp... 详细信息
来源: 评论