咨询与建议

限定检索结果

文献类型

  • 3,534 篇 会议
  • 2,549 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 6,084 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,100 篇 工学
    • 2,830 篇 计算机科学与技术...
    • 2,301 篇 软件工程
    • 1,050 篇 信息与通信工程
    • 515 篇 电气工程
    • 472 篇 生物工程
    • 468 篇 控制科学与工程
    • 458 篇 电子科学与技术(可...
    • 383 篇 光学工程
    • 298 篇 生物医学工程(可授...
    • 284 篇 机械工程
    • 256 篇 化学工程与技术
    • 202 篇 仪器科学与技术
    • 137 篇 动力工程及工程热...
    • 137 篇 网络空间安全
    • 134 篇 材料科学与工程(可...
    • 110 篇 建筑学
    • 106 篇 交通运输工程
  • 2,210 篇 理学
    • 1,192 篇 数学
    • 661 篇 物理学
    • 525 篇 生物学
    • 363 篇 统计学(可授理学、...
    • 270 篇 化学
    • 166 篇 系统科学
  • 1,065 篇 管理学
    • 567 篇 图书情报与档案管...
    • 538 篇 管理科学与工程(可...
    • 191 篇 工商管理
  • 249 篇 医学
    • 211 篇 临床医学
    • 186 篇 基础医学(可授医学...
    • 117 篇 药学(可授医学、理...
  • 148 篇 法学
    • 117 篇 社会学
  • 81 篇 教育学
  • 76 篇 农学
  • 51 篇 经济学
  • 21 篇 军事学
  • 18 篇 文学
  • 11 篇 艺术学
  • 5 篇 哲学

主题

  • 262 篇 feature extracti...
  • 234 篇 semantics
  • 164 篇 training
  • 131 篇 accuracy
  • 121 篇 computational mo...
  • 111 篇 deep learning
  • 105 篇 convolution
  • 87 篇 data mining
  • 84 篇 image segmentati...
  • 78 篇 object detection
  • 78 篇 data models
  • 76 篇 visualization
  • 70 篇 contrastive lear...
  • 70 篇 robustness
  • 70 篇 convolutional ne...
  • 66 篇 optimization
  • 64 篇 predictive model...
  • 63 篇 neural networks
  • 61 篇 federated learni...
  • 59 篇 face recognition

机构

  • 210 篇 shandong provinc...
  • 192 篇 key laboratory o...
  • 187 篇 hubei province k...
  • 143 篇 key laboratory o...
  • 141 篇 school of comput...
  • 141 篇 school of inform...
  • 116 篇 college of compu...
  • 104 篇 provincial key l...
  • 99 篇 fujian provincia...
  • 85 篇 shandong provinc...
  • 76 篇 national key lab...
  • 74 篇 university of ch...
  • 73 篇 peng cheng labor...
  • 71 篇 shandong provinc...
  • 63 篇 school of comput...
  • 62 篇 hubei province k...
  • 62 篇 shanghai key lab...
  • 60 篇 shanghai key lab...
  • 52 篇 fujian provincia...
  • 52 篇 school of comput...

作者

  • 64 篇 li zuoyong
  • 56 篇 huang qingming
  • 52 篇 zhaohui li
  • 51 篇 li zhaohui
  • 46 篇 li chenglong
  • 44 篇 zhang fuquan
  • 34 篇 tang jin
  • 33 篇 li wei
  • 32 篇 fan li
  • 32 篇 shen linlin
  • 31 篇 guo di
  • 31 篇 wang wei
  • 30 篇 zuoyong li
  • 30 篇 boxin shi
  • 29 篇 feng rui
  • 28 篇 yang zhiyong
  • 27 篇 wang xiao
  • 25 篇 liu yang
  • 25 篇 gao guanglai
  • 25 篇 li fan

语言

  • 5,516 篇 英文
  • 432 篇 其他
  • 145 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Provincial Key Laboratory of Computer Information Processing Technology"
6084 条 记 录,以下是691-700 订阅
排序:
Open-vocabulary 3D Semantic Understanding via Affinity Neural Radiance Fields
Open-vocabulary 3D Semantic Understanding via Affinity Neura...
收藏 引用
Next Generation Data-driven Networks (NGDN), International Conference on
作者: Yujie Fan Huan Luo Computer and Data Science Fuzhou University Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou China
Three-dimensional semantic understanding using only several multi-view images can largely reduce the communication burden on the network. In addition, while point clouds are extensively studied for 3D scene understand... 详细信息
来源: 评论
VIDA: HOMEOSTATIC VISUAL DOMAIN ADAPTER FOR CONTINUAL TEST TIME ADAPTATION  12
VIDA: HOMEOSTATIC VISUAL DOMAIN ADAPTER FOR CONTINUAL TEST T...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Liu, Jiaming Yang, Senqiao Jia, Peidong Zhang, Renrui Lu, Ming Guo, Yandong Xue, Wei Zhang, Shanghang National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University China AI2Robotics China The Chinese University of Hong Kong Hong Kong Hong Kong University of Science and Technology Hong Kong
Since real-world machine systems are running in non-stationary environments, Continual Test-Time Adaptation (CTTA) task is proposed to adapt the pre-trained model to continually changing target domains. Recently, exis... 详细信息
来源: 评论
Wide-Beam Designs for Terahertz Massive MIMO: SCA-ATP and S-SARV
Wide-Beam Designs for Terahertz Massive MIMO: SCA-ATP and S-...
收藏 引用
作者: Ning, Boyu Wang, Tiantian Huang, Chongwen Zhang, Yuchen Chen, Zhi University of Electronic Science and Technology of China National Key Laboratory of Science and Technology on Communications Chengdu611731 China Zhejiang University International Joint Innovation Center Haining314400 China Communication and Networking Zhejiang-Singapore Innovation and AI Joint Research Lab Zhejiang Provincial Key Laboratory of Information Processing Hangzhou310027 China
Terahertz (THz) communication is expected to be one of the core enabling technologies for future systems. Due to the poor scattering and severe reflection loss of THz waves, the line-of-sight (LoS) communication is co... 详细信息
来源: 评论
Recognizing Human-object Interactions for a Home Assistive Robot  8
Recognizing Human-object Interactions for a Home Assistive R...
收藏 引用
8th International Conference on Automation, Control and Robotics Engineering, CACRE 2023
作者: Wang, Liangliang Huo, Guanglei Chen, Xinwei Huang, Chengxi Wuhan University of Technology School of Computer Science and Artificial Intelligence Luoshi Road 122 Wuhan430070 China -HIT Research Institute of Engineering and Technology Building 9 Software Park Quanzhou362008 China Minjiang University Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Fuzhou350121 China
To enable robots to understand a specific assistive task during human-robot interactions under complex home scenes, at the center is the problem of human-object interaction (HOI) recognition. In particular, aiming at ... 详细信息
来源: 评论
Three-Channel Graph Convolutional Network  24
Three-Channel Graph Convolutional Network
收藏 引用
24th IEEE International Conference on High Performance Computing and Communications, 8th IEEE International Conference on Data Science and Systems, 20th IEEE International Conference on Smart City and 8th IEEE International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application, HPCC/DSS/SmartCity/DependSys 2022
作者: Meng, Lei Ye, Zhonglin Zhao, Haixing Yang, Yanlin Chen, Yang Wang, Zhaoyang College of Computer Qinghai Normal University Tibetan Information Processing Engineering Technology and Research Center of Qinghai Province The State Key Laboratory of Tibetan Intelligent Information Processing and Application Xining810008 China
At present, as an emerging direction of artificial intelligence, graph neural networks (GNNs) have developed rapidly and can solve many graph data problems efficiently. The real world is composed of a large number of ... 详细信息
来源: 评论
Instance-Aware Diffusion Implicit Process for Box-Based Instance Segmentation  26
Instance-Aware Diffusion Implicit Process for Box-Based Inst...
收藏 引用
26th European Conference on Artificial Intelligence, ECAI 2023
作者: Ren, Hao Liu, Xingsong Huang, Junjian Wan, Ru Pu, Jian Lu, Hong Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University China Institute of Science and Technology for Brain-inspired Intelligence Fudan University China Mogo.ai Information and Technology Co. Ltd. Shanghai China
The diffusion model has demonstrated impressive performance in image generation, but its potential for discriminative tasks such as instance segmentation remains unexplored. In this paper, we propose an Instance-aware... 详细信息
来源: 评论
Semantic Data Augmentation for Few-Shot Biomedical Named Entity Recognition
Semantic Data Augmentation for Few-Shot Biomedical Named Ent...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal processing, ICASSP 2025
作者: Zhang, Ying Wang, Weihua College of Computer Science Inner Mongolia University Hohhot China National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian Hohhot China Inner Mongolia Key Laboratory of Multilingual Artificial Intelligence Technology Hohhot China
Biomedical Named Entity Recognition (BioNER) aims to identify and classify entities in biomedical text. This task struggles with data scarcity due to limited annotated data. Although data augmentation is effective, ex... 详细信息
来源: 评论
An Efficient Particle YOLO Detector for Urine Sediment Detection  4th
An Efficient Particle YOLO Detector for Urine Sediment Dete...
收藏 引用
4th International Conference on Machine Learning for Cyber Security, ML4CS 2022
作者: Chen, Zejian Hu, Rong Chen, Fukun Fan, Haoyi Ching, Fum Yew Li, Zuoyong Su, Shimei Fujian Provincial Key Laboratory of Big Data Mining and Applications School of Computer Science and Mathematics Fujian University of Technology Fujian Fuzhou350118 China School of Computer and Artificial Intelligence Zhengzhou University Henan Zhengzhou450001 China School of Computer Sciences Universiti Sains Malaysia Penang11800 Malaysia Fujian Provincial Key Laboratory of Information Processing and Intelligent Control College of Computer and Control Engineering Minjiang University Fujian Fuzhou350121 China School of Electrical Engineering Zhengzhou University Henan Zhengzhou450001 China
Urine sediment detection is an essential aid in assessing kidney health. Traditional machine learning approaches treat urine sediment particle detection as an image classification task, segmenting particles for detect... 详细信息
来源: 评论
DeepPointMap2: Accurate and Robust LiDAR-Visual SLAM with Neural Descriptors  24
DeepPointMap2: Accurate and Robust LiDAR-Visual SLAM with Ne...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Zhang, Xiaze Ding, Ziheng Jing, Qi Cheng, Ying Ding, Wenchao Feng, Rui Fudan University Shanghai China The School of Computer Science Shanghai Key Laboratory of Intelligent Information Processing Fudan University China The Academy for Engineering and Technology Fudan University China The Shanghai Collaborative Innovation Center of Intelligent Visual Computing China
Simultaneous Localization and Mapping (SLAM) plays a pivotal role in autonomous driving and robotics. Existing methods often rely on hand-craft feature extraction and cross-modal fusion techniques, resulting in limite... 详细信息
来源: 评论
Increasing Representative Ability for Topic Representation  34
Increasing Representative Ability for Topic Representation
收藏 引用
34th International Conference on Software Engineering and Knowledge Engineering, SEKE 2022
作者: Yan, Rong Tang, Ailing Zhang, Ziyi College of Computer Science Inner Mongolia University Inner Mongolia Key Laboratory of Mongolian Information Processing Technology National & Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian Hohhot010021 China
As for standard topic model, such as LDA (Latent Dirichlet Allocation), each topic is generally depicted by a weighted word set, where the high-ranked words are deemed more representative. Meanwhile, the probability o... 详细信息
来源: 评论