咨询与建议

限定检索结果

文献类型

  • 235 篇 会议
  • 180 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 416 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 182 篇 计算机科学与技术...
    • 153 篇 软件工程
    • 68 篇 信息与通信工程
    • 50 篇 电气工程
    • 32 篇 光学工程
    • 28 篇 生物工程
    • 22 篇 生物医学工程(可授...
    • 19 篇 控制科学与工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 12 篇 机械工程
    • 10 篇 交通运输工程
    • 9 篇 动力工程及工程热...
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 仪器科学与技术
    • 8 篇 网络空间安全
  • 143 篇 理学
    • 80 篇 数学
    • 36 篇 物理学
    • 35 篇 生物学
    • 30 篇 统计学(可授理学、...
    • 15 篇 化学
    • 11 篇 系统科学
    • 9 篇 地球物理学
  • 54 篇 管理学
    • 35 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 19 篇 医学
    • 15 篇 临床医学
    • 14 篇 基础医学(可授医学...
  • 13 篇 法学
    • 13 篇 社会学
  • 6 篇 教育学
  • 5 篇 经济学
  • 4 篇 农学
  • 1 篇 军事学

主题

  • 31 篇 semantics
  • 30 篇 feature extracti...
  • 20 篇 accuracy
  • 18 篇 training
  • 16 篇 computational mo...
  • 14 篇 contrastive lear...
  • 13 篇 data mining
  • 12 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 federated learni...
  • 10 篇 speech processin...
  • 10 篇 optimization
  • 9 篇 anomaly detectio...
  • 9 篇 noise
  • 9 篇 graph neural net...
  • 9 篇 data models
  • 8 篇 deep learning
  • 8 篇 three-dimensiona...
  • 8 篇 signal processin...
  • 8 篇 neural networks

机构

  • 71 篇 shandong provinc...
  • 61 篇 key laboratory o...
  • 45 篇 shandong enginee...
  • 32 篇 fujian provincia...
  • 29 篇 college of compu...
  • 19 篇 shandong fundame...
  • 19 篇 national enginee...
  • 15 篇 key laboratory o...
  • 15 篇 guangdong provin...
  • 14 篇 guangdong provin...
  • 12 篇 college of mathe...
  • 11 篇 shandong enginee...
  • 11 篇 faculty of data ...
  • 10 篇 key laboratory o...
  • 10 篇 school of physic...
  • 10 篇 key laboratory o...
  • 10 篇 guizhou provinci...
  • 9 篇 university of ch...
  • 9 篇 shenzhen researc...
  • 8 篇 college of compu...

作者

  • 18 篇 guo wenzhong
  • 11 篇 wang shiping
  • 11 篇 jing zhao
  • 11 篇 guo kun
  • 10 篇 zhenyu yang
  • 9 篇 li haizhou
  • 8 篇 wang jinbao
  • 8 篇 xiaodong wu
  • 8 篇 shen linlin
  • 8 篇 ke xiao
  • 7 篇 niyato dusit
  • 7 篇 yu zhiyong
  • 6 篇 chen zhaoliang
  • 6 篇 li yan
  • 6 篇 jiguo yu
  • 6 篇 qin lu
  • 5 篇 hu liang
  • 5 篇 yushui geng
  • 5 篇 zhang lei
  • 5 篇 huang fangwan

语言

  • 384 篇 英文
  • 31 篇 其他
  • 1 篇 中文
检索条件"机构=Provincial Key Laboratory of Data-Intensive Computing"
416 条 记 录,以下是251-260 订阅
排序:
Few-shot Class-Incremental Semantic Segmentation via Pseudo-Labeling and Knowledge Distillation
arXiv
收藏 引用
arXiv 2023年
作者: Jiang, Chengjia Wang, Tao Li, Sien Wang, Jinyang Wang, Shirui Antoniou, Antonios Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang University Fuzhou China The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions Wuyi University Wuyishan China College of Computer and Data Science Fuzhou University Fuzhou China Department of Computer Science and Engineering European University Cyprus Nicosia Cyprus
We address the problem of learning new classes for semantic segmentation models from few examples, which is challenging because of the following two reasons. Firstly, it is difficult to learn from limited novel data t... 详细信息
来源: 评论
Multispectral Pan-sharpening via Dual-Channel Convolutional Network with Convolutional LSTM Based Hierarchical Spatial-Spectral Feature Fusion
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Dong Bai, Yunpeng Li, Ying School of Computer Science National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Provincial Key Laboratory of Speech & Image Information Processing Northwestern Polytechnical University Xian China School of Computing and Information Systems University of Melbourne VIC3010 Australia
Multispectral pan-sharpening aims at producing a high resolution (HR) multispectral (MS) image in both spatial and spectral domains by fusing a panchromatic (PAN) image and a corresponding MS image. In this paper, we ... 详细信息
来源: 评论
HairDiffusion: Vivid Multi-Colored Hair Editing via Latent Diffusion
arXiv
收藏 引用
arXiv 2024年
作者: Zeng, Yu Zhang, Yang Liu, Jiachen Shen, Linlin Deng, Kaijun He, Weizhao Wang, Jinbao Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China
Hair editing is a critical image synthesis task that aims to edit hair color and hairstyle using text descriptions or reference images, while preserving irrelevant attributes (e.g., identity, background, cloth). Many ... 详细信息
来源: 评论
DEGSTalk: Decomposed Per-Embedding Gaussian Fields for Hair-Preserving Talking Face Synthesis
arXiv
收藏 引用
arXiv 2024年
作者: Deng, Kaijun Zheng, Dezhi Xie, Jindong Wang, Jinbao Xie, Weicheng Shen, Linlin Song, Siyang Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China Department of Computer Science University of Exeter United Kingdom
Accurately synthesizing talking face videos and capturing fine facial features for individuals with long hair presents a significant challenge. To tackle these challenges in existing methods, we propose a decomposed p... 详细信息
来源: 评论
Few-Shot Class-Incremental Semantic Segmentation via Pseudo-Labeling and Knowledge Distillation
Few-Shot Class-Incremental Semantic Segmentation via Pseudo-...
收藏 引用
Information Science, Parallel and Distributed Systems (ISPDS), International Conference on
作者: Chengjia Jiang Tao Wang Sien Li Jinyang Wang Shirui Wang Antonios Antoniou Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang University Fuzhou China The Key Laboratory of Cognitive Computing and Intelligent Information Processing Fujian Education Institutions Wuyi University Wuyishan China College of Computer and Data Science Fuzhou University Fuzhou China Department of Computer Science and Engineering European University Cyprus Nicosia Cyprus
We address the problem of learning new classes for semantic segmentation models from few examples, which is challenging because of the following two reasons. Firstly, it is difficult to learn from limited novel data t...
来源: 评论
Adaptive Multi-Channel Contrastive Graph Convolutional Network with Graph and Feature Fusion
SSRN
收藏 引用
SSRN 2023年
作者: Zhong, Luying Lu, Jielong Chen, Zhaoliang Song, Na Wang, Shiping College of Computer and Data Science Fuzhou University Fuzhou350108 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China School of Mechanical Electrical and Information Engineering Putian University Putian351100 China
Multi-view semi-supervised classification is an attractive topic in real-world applications. Due to the powerful capability of gathering information from neighbors, Graph Convolutional Network (GCN) has become a hotsp... 详细信息
来源: 评论
Adaptive-Propagating Heterophilous Graph Convolutional Network
SSRN
收藏 引用
SSRN 2024年
作者: Huang, Yang Pi, Yueyang Shi, Yiqing Wang, Shiping Guo, Wenzhong College of Computer and Data Science Fuzhou University Fuzhou350116 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China College of Photonic and Electronic Engineering Fujian Normal University Fuzhou350007 China
Graph convolutional network have significant advantages in tasks dealing with graph-structured data, but most existing approaches based on graph convolutional network usually potentially assume that nodes belonging to... 详细信息
来源: 评论
Ciphertext-policy attribute-based proxy re-encryption via constrained PRFs
收藏 引用
Science China(Information Sciences) 2021年 第6期64卷 242-243页
作者: Zengpeng LI Vishal SHARMA Chunguang MA Chunpeng GE Willy SUSILO College of Computer Science and Technology Qingdao University Guizhou Provincial Key Laboratory of Public Big Data Guizhou University ISTD Pillar Singapore University of Technology and Design (SUTD) College of Computer Science and Engineering Shandong University of Science and Technology College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics School of Computing and Information Technology University of Wollongong
Dear editor,To maintain the confidentiality of the sensitive data, users tend to encrypt their data under an associated access policy(or attributes) before outsourcing them to the *** the traditional access control mo... 详细信息
来源: 评论
A Low-Complexity Expectation Propagation Detector for MIMO-OTFS
A Low-Complexity Expectation Propagation Detector for MIMO-O...
收藏 引用
IEEE International Conference on Communications in China Workshops (ICCC)
作者: Xinhua Zheng Zhihao Chen Xiang Chen Xijun Wang Xiao Huang School of Electronics and Information Technology Sun Yat-sen University Guangzhou China Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen China School of Microelectronics Science and Technology Sun Yat-sen University Zhuhai China
Orthogonal time frequency space (OTFS) modu-lation has been demonstrated to achieve reliable communication over time-varying wireless channels in high-speed dynamic environments. In this paper, the expectation propaga... 详细信息
来源: 评论
Lyapunov-guided Deep Reinforcement Learning for Semantic-aware AoI Minimization in UAV-assisted Wireless Networks
arXiv
收藏 引用
arXiv 2024年
作者: Long, Yusi Gong, Shimin Sun, Sumei Lee, Gary Li, Lanhua Niyato, Dusit The School of Intelligent Systems Engineering Sun Yat-Sen University Shenzhen Campus Shenzhen518000 China Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology China A*STAR Singapore The College of Computing and Data Science Nanyang Technological University Singapore
This paper investigates an unmanned aerial vehicle (UAV)-assisted semantic network where the ground users (GUs) periodically capture and upload the sensing information to a base station (BS) via UAVs’ relaying. Both ... 详细信息
来源: 评论