咨询与建议

限定检索结果

文献类型

  • 235 篇 会议
  • 180 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 416 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 182 篇 计算机科学与技术...
    • 153 篇 软件工程
    • 68 篇 信息与通信工程
    • 50 篇 电气工程
    • 32 篇 光学工程
    • 28 篇 生物工程
    • 22 篇 生物医学工程(可授...
    • 19 篇 控制科学与工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 12 篇 机械工程
    • 10 篇 交通运输工程
    • 9 篇 动力工程及工程热...
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 仪器科学与技术
    • 8 篇 网络空间安全
  • 143 篇 理学
    • 80 篇 数学
    • 36 篇 物理学
    • 35 篇 生物学
    • 30 篇 统计学(可授理学、...
    • 15 篇 化学
    • 11 篇 系统科学
    • 9 篇 地球物理学
  • 54 篇 管理学
    • 35 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 19 篇 医学
    • 15 篇 临床医学
    • 14 篇 基础医学(可授医学...
  • 13 篇 法学
    • 13 篇 社会学
  • 6 篇 教育学
  • 5 篇 经济学
  • 4 篇 农学
  • 1 篇 军事学

主题

  • 31 篇 semantics
  • 30 篇 feature extracti...
  • 20 篇 accuracy
  • 18 篇 training
  • 16 篇 computational mo...
  • 14 篇 contrastive lear...
  • 13 篇 data mining
  • 12 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 federated learni...
  • 10 篇 speech processin...
  • 10 篇 optimization
  • 9 篇 anomaly detectio...
  • 9 篇 noise
  • 9 篇 graph neural net...
  • 9 篇 data models
  • 8 篇 deep learning
  • 8 篇 three-dimensiona...
  • 8 篇 signal processin...
  • 8 篇 neural networks

机构

  • 71 篇 shandong provinc...
  • 61 篇 key laboratory o...
  • 45 篇 shandong enginee...
  • 32 篇 fujian provincia...
  • 29 篇 college of compu...
  • 19 篇 shandong fundame...
  • 19 篇 national enginee...
  • 15 篇 key laboratory o...
  • 15 篇 guangdong provin...
  • 14 篇 guangdong provin...
  • 12 篇 college of mathe...
  • 11 篇 shandong enginee...
  • 11 篇 faculty of data ...
  • 10 篇 key laboratory o...
  • 10 篇 school of physic...
  • 10 篇 key laboratory o...
  • 10 篇 guizhou provinci...
  • 9 篇 university of ch...
  • 9 篇 shenzhen researc...
  • 8 篇 college of compu...

作者

  • 18 篇 guo wenzhong
  • 11 篇 wang shiping
  • 11 篇 jing zhao
  • 11 篇 guo kun
  • 10 篇 zhenyu yang
  • 9 篇 li haizhou
  • 8 篇 wang jinbao
  • 8 篇 xiaodong wu
  • 8 篇 shen linlin
  • 8 篇 ke xiao
  • 7 篇 niyato dusit
  • 7 篇 yu zhiyong
  • 6 篇 chen zhaoliang
  • 6 篇 li yan
  • 6 篇 jiguo yu
  • 6 篇 qin lu
  • 5 篇 hu liang
  • 5 篇 yushui geng
  • 5 篇 zhang lei
  • 5 篇 huang fangwan

语言

  • 384 篇 英文
  • 31 篇 其他
  • 1 篇 中文
检索条件"机构=Provincial Key Laboratory of Data-Intensive Computing"
416 条 记 录,以下是281-290 订阅
排序:
Adaptive Pruning for Large Language Models with Structural Importance Awareness
arXiv
收藏 引用
arXiv 2024年
作者: Zheng, Haotian Ren, Jinke Sun, Yushan Zhang, Ruichen Zhang, Wenbo Li, Zhen Niyato, Dusit Cui, Shuguang Han, Yatong National Key Laboratory of Autonomous Marine Vehicle Technology Harbin Engineering University Harbin150001 China The Chinese University of Hong Kong Shenzhen518172 China The Guangdong Provincial Key Laboratory of Future Networks of Intelligence The Chinese University of Hong Kong Shenzhen518172 China College of Computing and Data Science Nanyang Technological University Singapore Co. Ltd Shenzhen518048 China SSE The FNii-Shenzhen The Guangdong Provincial Key Laboratory of Future Networks of Intelligence The Chinese University of Hong Kong Shenzhen518172 China FNii-Shenzhen The Guangdong Provincial Key Laboratory of Future Networks of Intelligence The Chinese University of Hong Kong Shenzhen518172 China Infused Synapse AI Shenzhen518048 China
The recent advancements in large language models (LLMs) have significantly improved language understanding and generation capabilities. However, it is difficult to deploy LLMs on resource-constrained edge devices due ... 详细信息
来源: 评论
Enhancing Small Object Detection in Aerial Imagery Based on Strong Feature Extraction and Batch Dimension
Enhancing Small Object Detection in Aerial Imagery Based on ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Bingnan Cao Di Wang Ying Guo Hu Zhang Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center (National Supercomputer Center in Jinan) Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China The Institute of Data Science City University of Macau Macau China
Object detection is a fundamental component of computer vision, playing a pivotal role in various applications. However, the accurate detection of small and densely distributed objects remains a challenging problem in... 详细信息
来源: 评论
Contrastive Learning for Chest X-ray Classification: A Fusion of Topological data Analysis and ResNet
Contrastive Learning for Chest X-ray Classification: A Fusio...
收藏 引用
IEEE International Conference on data Science in Cyberspace (DSC)
作者: Hao Ren Zeyu Luo Fengshi Jing Xinyue Zhang Han He Yonghao Yu Dawei Zhao Faculty of Data Science City University of Macau China Minzu University of China Beijing China Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China
Lung diseases such as pneumonia and tuberculosis present significant global health challenges, leading to millions of deaths annually. Chest X-ray imaging is crucial for diagnosing these conditions, but interpretation... 详细信息
来源: 评论
Transformer-Based Hierarchical Dynamic Decoders for Salient Object Detection
SSRN
收藏 引用
SSRN 2023年
作者: Zheng, Qingping Zheng, Ling Deng, Jiankang Li, Ying Shang, Changjing Shen, Qiang School of Computer Science National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Provincial Key Laboratory of Speech & Image Information Processing Northewestern Polytechnical University Shaanxi Xi’an710129 China Fuzhou Institute of Data Technology Fujian350200 China Department of Computing Imperial College London LondonSW7 2AZ United Kingdom
HighlightsTransformer-Based Hierarchical Dynamic Decoders for Salient Object DetectionQingping Zheng, Ling Zheng, Jiankang Deng, Ying Li, Changjing Shang, Qiang Shen• T-HDDNet employs dynamic upsampling and fusion for... 详细信息
来源: 评论
SAV-SE: Scene-aware Audio-Visual Speech Enhancement with Selective State Space Model
arXiv
收藏 引用
arXiv 2024年
作者: Qian, Xinyuan Gao, Jiaran Zhang, Yaodan Zhang, Qiquan Liu, Hexin Garcia, Leibny Paola Li, Haizhou The School of Computer and Communication Engineering University of Science and Technology Beijing Beijing100083 China The School of Electrical Engineering and Telecommunications The University of New South Wales Sydney2052 Australia The College of Computing and Data Science Nanyang Technological University Singapore The Center for Language and Speech Processing Johns Hopkins University United States The Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen518172 China Shenzhen Research Institute of Big data Shenzhen51872 China
Speech enhancement plays an essential role in various applications, and the integration of visual information has been demonstrated to bring substantial advantages. However, the majority of current research concentrat... 详细信息
来源: 评论
StarGAT: Star-Shaped Hierarchical Graph Attentional Network for Heterogeneous Network Representation Learning
StarGAT: Star-Shaped Hierarchical Graph Attentional Network ...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Wen-Zhi Li Ling Huang Chang-Dong Wang Yu-Xin Ye School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Province Key Laboratory of Computational Science Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China College of Mathematics and Informatics South China Agricultural University Guangzhou China Guangdong Provincial Key Laboratory of Public Finance and Taxation with Big Data Application Guangzhou China College of Computer Science and Technology Jilin University Changchun China
Many real-world graphs can be viewed as Heterogeneous Networks or Heterogeneous Information Networks (HINs) for that they comprise a diversity of node types and relation types. Due to the efficient representation abil... 详细信息
来源: 评论
Prediction of Estimated Time of Arrival for Multi-Airport Systems Via "Bubble" Mechanism
SSRN
收藏 引用
SSRN 2022年
作者: Wang, Lechen Mao, Jianfeng Li, Lishuai Li, Xuechun Tu, Yilei School of Data Science The Chinese University of Hong Kong Shenzhen China School of Science and Engineering The Chinese University of Hong Kong Shenzhen China Shenzhen Research Institute of Big Data Guangdong China Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen China Faculty of Aerospace Engineering Delft University of Technology Delft2600 AA Netherlands School of Data Science City University of Hong Kong Hong Kong
Predicting Estimated Time of Arrival (ETA) for a Multi-Airport System (MAS) is much more challenging than for a single airport system because of complex air route structure, dense air traffic volume and vagaries of tr... 详细信息
来源: 评论
Dual Prototypes Contrastive Learning for Semi-Supervised Medical Image Segmentation
SSRN
收藏 引用
SSRN 2024年
作者: Yue, Tianai Xu, Rongtao Wu, Jingqian Yang, Wenjie Du, Shide Wang, Changwei Johns Hopkins University Baltimore21218 United States State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China The University of Hong Kong Hong Kong999077 Hong Kong College of Computer and Big Data Fuzhou University Fuzhou350108 China Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Qilu University of Technology Shandong Academy of Sciences Jinan250014 China Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing Shandong Fundamental Research Center for Computer Science Jinan250014 China
Semi-supervised techniques for medical image segmentation have demonstrated potential, effectively training models using scarce labeled data alongside a wealth of unlabeled data. Therefore, semi-supervised medical ima... 详细信息
来源: 评论
Petri Net Control Method for Pipe-line Systems and Its Implementation via CIF3 ⁎
收藏 引用
IFAC-PapersOnLine 2019年 第24期52卷 261-266页
作者: YuHao Fu JiLiang Luo Huifeng Wu Jianhong Ye Yi-sheng Huang College Information Science and Engineering Huaqiao University Xiamen 361021 China College Information Science and Engineering Huaqiao University Xiamen 361021 China and also with Fujian Engineering Research Center of Motor Control and System Optimal Schedule Xiamen 361021 China Institute of Intelligent and Software Technology Hangzhou Dianzi University Hangzhou 310018 China Computer Science and Technology Huaqiao University Xiamen 361021 China and also with Fujian Provincial Key Laboratory of Data Intensive Computing Quanzhou 362000 China Department of Electrical Engineering National Ilan University Taiwan
As for a pipe-line system subjected to complex operations, an approach is proposed to synthesize the controller via Petri nets (PNs) such that the plant is run as concurrently as possible and the loads of equipments a... 详细信息
来源: 评论
ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zhaoliang Wu, Zhihao Sadikaj, Ylli Plant, Claudia Dai, Hong-Ning Wang, Shiping Cheung, Yiu-Ming Guo, Wenzhong College of Computer and Data Science Fuzhou University Fuzhou350116 China Department of Computer Science Hong Kong Baptist University Hong Kong Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China Faculty of Computer Science and with the research network Data Science @ Uni Vienna University of Vienna Vienna1090 Austria
Although Graph Neural Networks (GNNs) have exhibited the powerful ability to gather graph-structured information from neighborhood nodes via various message-passing mechanisms, the performance of GNNs is limited by po... 详细信息
来源: 评论