咨询与建议

限定检索结果

文献类型

  • 235 篇 会议
  • 180 篇 期刊文献

馆藏范围

  • 415 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 182 篇 计算机科学与技术...
    • 153 篇 软件工程
    • 68 篇 信息与通信工程
    • 50 篇 电气工程
    • 32 篇 光学工程
    • 28 篇 生物工程
    • 22 篇 生物医学工程(可授...
    • 19 篇 控制科学与工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 12 篇 机械工程
    • 10 篇 交通运输工程
    • 9 篇 动力工程及工程热...
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 仪器科学与技术
    • 8 篇 网络空间安全
  • 143 篇 理学
    • 80 篇 数学
    • 36 篇 物理学
    • 35 篇 生物学
    • 30 篇 统计学(可授理学、...
    • 15 篇 化学
    • 11 篇 系统科学
    • 9 篇 地球物理学
  • 54 篇 管理学
    • 35 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 19 篇 医学
    • 15 篇 临床医学
    • 14 篇 基础医学(可授医学...
  • 13 篇 法学
    • 13 篇 社会学
  • 6 篇 教育学
  • 5 篇 经济学
  • 4 篇 农学
  • 1 篇 军事学

主题

  • 31 篇 semantics
  • 30 篇 feature extracti...
  • 20 篇 accuracy
  • 18 篇 training
  • 16 篇 computational mo...
  • 14 篇 contrastive lear...
  • 13 篇 data mining
  • 12 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 federated learni...
  • 10 篇 speech processin...
  • 10 篇 optimization
  • 9 篇 anomaly detectio...
  • 9 篇 noise
  • 9 篇 graph neural net...
  • 9 篇 data models
  • 8 篇 deep learning
  • 8 篇 three-dimensiona...
  • 8 篇 signal processin...
  • 8 篇 neural networks

机构

  • 71 篇 shandong provinc...
  • 61 篇 key laboratory o...
  • 45 篇 shandong enginee...
  • 32 篇 fujian provincia...
  • 29 篇 college of compu...
  • 19 篇 shandong fundame...
  • 19 篇 national enginee...
  • 15 篇 key laboratory o...
  • 15 篇 guangdong provin...
  • 14 篇 guangdong provin...
  • 12 篇 college of mathe...
  • 11 篇 shandong enginee...
  • 11 篇 faculty of data ...
  • 10 篇 key laboratory o...
  • 10 篇 school of physic...
  • 10 篇 key laboratory o...
  • 10 篇 guizhou provinci...
  • 9 篇 university of ch...
  • 9 篇 shenzhen researc...
  • 8 篇 college of compu...

作者

  • 18 篇 guo wenzhong
  • 11 篇 wang shiping
  • 11 篇 jing zhao
  • 11 篇 guo kun
  • 10 篇 zhenyu yang
  • 9 篇 li haizhou
  • 8 篇 wang jinbao
  • 8 篇 xiaodong wu
  • 8 篇 shen linlin
  • 8 篇 ke xiao
  • 7 篇 niyato dusit
  • 7 篇 yu zhiyong
  • 6 篇 chen zhaoliang
  • 6 篇 li yan
  • 6 篇 jiguo yu
  • 6 篇 qin lu
  • 5 篇 hu liang
  • 5 篇 yushui geng
  • 5 篇 zhang lei
  • 5 篇 huang fangwan

语言

  • 383 篇 英文
  • 31 篇 其他
  • 1 篇 中文
检索条件"机构=Provincial Key Laboratory of Data-Intensive Computing"
415 条 记 录,以下是291-300 订阅
排序:
Using Deep Active Learning to Save Sensing Cost When Estimating Overall Air Quality  15th
Using Deep Active Learning to Save Sensing Cost When Estimat...
收藏 引用
15th International Conference on Green, Pervasive, and Cloud computing, GPC 2020
作者: Lei, Dehao Yu, Zhiyong Li, Peiguan Han, Lei Huang, Fangwan College of Mathematics and Computer Science Fuzhou University Fuzhou China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou China Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fuzhou China
Air quality is widely concerned by the governments and people. To save cost, air quality monitoring stations are deployed at only a few locations, and the stations are actuated at partial time. Therefore, it is necess... 详细信息
来源: 评论
An Improved Sparse Representation Classifier Based on data Augmentation for Time Series Classification  15th
An Improved Sparse Representation Classifier Based on Data A...
收藏 引用
15th International Conference on Green, Pervasive, and Cloud computing, GPC 2020
作者: Lu, Juhong Huang, Fangwan Yu, Zhiyong College of Mathematics and Computer Science Fuzhou University Fuzhou China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou China Key Laboratory of Spatial Data Mining & Information Sharing Ministry of Education Fuzhou China
Sparse Representation-based Classification (SRC), which has achieved good performance in face recognition and other image classification, has been successfully extended to time series classification in recent years. A... 详细信息
来源: 评论
Brain Image Parcellation Using Fully Convolutional Network with Adaptively Selected Features from Brain Atlases  9
Brain Image Parcellation Using Fully Convolutional Network w...
收藏 引用
9th International Conference on Bioinformatics and Biomedical Science, ICBBS 2020
作者: Zhang, Xiao Zhao, Haifeng Tang, Zhenyu Zhang, Shaojie Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China
Brain image parcellation is an important data processing step in neuroscience. Since multi-atlas based parcellation (MAP) uses prior information from brain atlases (i.e., manually labeled brainregions), it can provide... 详细信息
来源: 评论
MOAL: Multi-view Out-of-distribution Awareness Learning
收藏 引用
Neural Networks 2025年 190卷 107581页
作者: Xuzheng Wang Zihan Fang Shide Du Wenzhong Guo Shiping Wang College of Computer and Data Science Fuzhou University Fuzhou 350108 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou 350108 China
Multi-view learning integrates data from multiple sources to enhance task performance by improving data quality. However, existing approaches primarily focus on intra-distribution data learning and consequently fail t... 详细信息
来源: 评论
Balanced Multi-view Clustering
arXiv
收藏 引用
arXiv 2025年
作者: Li, Zhenglai Wang, Jun Tang, Chang Zhu, Xinzhong Zhang, Wei Liu, Xinwang Faculty of data science City University of Macau 999078 China School of computer National University of Defense Technology Changsha410073 China School of computer China University of Geosciences Wuhan430074 China College of Mathematics Physics and Information Engineering Zhejiang Normal University Jinhua China Research Institute of Ningbo Cixing Co. Ltd Ningbo China Qilu University of Technology Shandong Academy of Sciences China Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing Shandong Fundamental Research Center for Computer Science Jinan250000 China
Multi-view clustering (MvC) aims to integrate information from different views to enhance the capability of the model in capturing the underlying data structures. The widely used joint training paradigm in MvC is pote... 详细信息
来源: 评论
Learnable Graph Convolutional Network and Feature Fusion for Multi-view Learning
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Zhaoliang Fu, Lele Yao, Jie Guo, Wenzhong Plant, Claudia Wang, Shiping College of Computer and Data Science Fuzhou University Fuzhou350116 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China Faculty of Computer Science University of Vienna Vienna1090 Austria Research Network Data Science @ Uni Vienna University of Vienna Vienna1090 Austria
In practical applications, multi-view data depicting objectives from assorted perspectives can facilitate the accuracy increase of learning algorithms. However, given multi-view data, there is limited work for learnin... 详细信息
来源: 评论
Decentralized Linear MMSE Equalizer Under Colored Noise for Massive MIMO Systems
Decentralized Linear MMSE Equalizer Under Colored Noise for ...
收藏 引用
2021 IEEE Global Communications Conference (GLOBECOM)
作者: Xiaotong Zhao Xin Guan Mian Li Qingjiang Shi School of Software Engineering Tongji University Shanghai China Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen China Shenzhen Research Institute of Big Data Shenzhen China
Conventional uplink equalization in massive MIMO systems relies on a centralized baseband processing architecture. However, as the number of base station antenna increases, centralized baseband processing architecture... 详细信息
来源: 评论
Wasserstein Archetypal Analysis
arXiv
收藏 引用
arXiv 2022年
作者: Craig, Katy Osting, Braxton Wang, Dong Xu, Yiming Department of Mathematics University of California Santa Barbara Department of Mathematics University of Utah Salt Lake City School of Science and Engineering & Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen Guangdong China Corporate Model Risk Wells Fargo
Archetypal analysis is an unsupervised machine learning method that summarizes data using a convex polytope. In its original formulation, for fixed k, the method finds a convex polytope with k vertices, called archety... 详细信息
来源: 评论
Speaker Extraction with Co-Speech Gestures Cue
arXiv
收藏 引用
arXiv 2022年
作者: Pan, Zexu Qian, Xinyuan Li, Haizhou The Integrative Sciences and Engineering Programme The Institute of Data Science National University of Singapore 119077 Singapore The Department of Electrical and Computer Engineering National University of Singapore 119077 Singapore The Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen518172 China The School of Data Science The Chinese University of Hong Kong Shenzhen518172 China The University of Bremen 28359 Germany
Speaker extraction seeks to extract the clean speech of a target speaker from a multi-talker mixture speech. There have been studies to use a pre-recorded speech sample or face image of the target speaker as the speak... 详细信息
来源: 评论
A residual attention-based privacy-preserving biometrics model of transcriptome prediction from genome
A residual attention-based privacy-preserving biometrics mod...
收藏 引用
IEEE International Conference on Trust, Security and Privacy in computing and Communications (TrustCom)
作者: Cheng Tian Song Liu Jinbao Li Guangchen Wang Luyue Kong Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Engineering Research Center of Big Data Applied Technology Faculty of Computer Science and Technology Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China Department of Medicine Shandong Medical College Jinan China
Transcriptome prediction from genetic variation data is an important task in the privacy-preserving and biometrics field, which can better protect genomic data and achieve biometric recognition through transcriptome. ... 详细信息
来源: 评论