咨询与建议

限定检索结果

文献类型

  • 90 篇 会议
  • 84 篇 期刊文献

馆藏范围

  • 174 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 116 篇 工学
    • 80 篇 计算机科学与技术...
    • 59 篇 软件工程
    • 37 篇 信息与通信工程
    • 23 篇 生物工程
    • 12 篇 电气工程
    • 10 篇 光学工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 控制科学与工程
    • 8 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 5 篇 网络空间安全
    • 4 篇 土木工程
    • 4 篇 化学工程与技术
    • 3 篇 交通运输工程
  • 61 篇 理学
    • 38 篇 数学
    • 26 篇 生物学
    • 9 篇 物理学
    • 7 篇 统计学(可授理学、...
    • 5 篇 化学
    • 2 篇 地质学
    • 2 篇 系统科学
  • 33 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 9 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 6 篇 法学
    • 5 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 12 篇 feature extracti...
  • 7 篇 deep learning
  • 7 篇 convolution
  • 7 篇 semantics
  • 7 篇 training
  • 6 篇 object detection
  • 5 篇 speech processin...
  • 5 篇 accuracy
  • 5 篇 convolutional ne...
  • 5 篇 ontology
  • 4 篇 anomaly detectio...
  • 4 篇 signal processin...
  • 3 篇 generative adver...
  • 3 篇 three-dimensiona...
  • 3 篇 prototypes
  • 3 篇 ontologies
  • 3 篇 information tech...
  • 3 篇 contrastive lear...
  • 3 篇 noise
  • 3 篇 antenna measurem...

机构

  • 35 篇 hunan provincial...
  • 30 篇 school of comput...
  • 17 篇 guangdong provin...
  • 15 篇 national enginee...
  • 10 篇 intelligent info...
  • 9 篇 fujian provincia...
  • 8 篇 college of elect...
  • 8 篇 fujian key lab f...
  • 8 篇 fujian provincia...
  • 7 篇 college of compu...
  • 6 篇 college of infor...
  • 6 篇 school of comput...
  • 5 篇 engineering rese...
  • 5 篇 fujian provincia...
  • 4 篇 school of comput...
  • 4 篇 college of compu...
  • 4 篇 shenzhen institu...
  • 4 篇 hunan provincial...
  • 4 篇 hunan provincial...
  • 4 篇 school of inform...

作者

  • 13 篇 xue xingsi
  • 12 篇 li zuoyong
  • 10 篇 feng li
  • 8 篇 wang jinbao
  • 8 篇 dengyong zhang
  • 8 篇 shen linlin
  • 7 篇 li wenjun
  • 7 篇 zuoyong li
  • 7 篇 li ping
  • 6 篇 fan haoyi
  • 5 篇 he shiming
  • 5 篇 gao can
  • 5 篇 yang yongjie
  • 5 篇 shuo cai
  • 5 篇 wenjun li
  • 5 篇 li feng
  • 4 篇 shenghua teng
  • 4 篇 fei yu
  • 4 篇 hu rong
  • 4 篇 zhou shuren

语言

  • 162 篇 英文
  • 12 篇 其他
检索条件"机构=Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation"
174 条 记 录,以下是31-40 订阅
排序:
Polyp Segmentation Neural Network with Simple Encoding Structure and Reverse Attention Module  13
Polyp Segmentation Neural Network with Simple Encoding Struc...
收藏 引用
13th International Conference on Information Technology in Medicine and Education, ITME 2023
作者: Wang, Jie Li, Zuoyong Xu, Haiping Cheng, Xuesong Teng, Shenghua College of Electronic and Information Engineering Shandong University of Science and Technology Qingdao266590 China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control College of Computer and Control Engineering Minjiang University Fuzhou350121 China Fujian Key Laboratory of Medical Big Data Engineering Fujian Provincial Hospital Fuzhou350001 China College of Mathematics and Data Science Minjiang University Fuzhou350121 China
Colorectal cancer is a common malignancy. In colonoscopy images, computer-assisted polyp segmentation helps doctors diagnose and treat disorders more precisely. In recent years, some methods based on deep convolutiona... 详细信息
来源: 评论
KAC-Unet: A Medical Image Segmentation With the Adaptive Group Strategy and Kolmogorov-Arnold Network
收藏 引用
IEEE Transactions on Instrumentation and Measurement 2025年 74卷
作者: Lin, Shiying Hu, Rong Li, Zuoyong Lin, Qinghua Zeng, Kun Wu, Xiang Fujian University of Technology Fujian Provincial Key Laboratory of Big Data Mining and Applications School of Computer Science and Mathematics Fuzhou350118 China Minjiang University Fujian Provincial Key Laboratory of Information Processing and Intelligent Control School of Computer and Big Data Fuzhou350121 China Fuzhou University Affiliated Provincial Hospital Provincial Clinical Medical College Fujian Medical University Department of Urology Fuzhou350001 China
In the field of deep learning-based medical image segmentation, convolutional neural networks (CNNs) extract image features by combining linear convolutional layers with nonlinear activation functions. However, excess... 详细信息
来源: 评论
MEFA-Net: A mask enhanced feature aggregation network for polyp segmentation
收藏 引用
Computers in Biology and Medicine 2025年 186卷 109601-109601页
作者: Ke, Xiao Chen, Guanhong Liu, Hao Guo, Wenzhong Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing College of Computer and Data Science Fuzhou University Fuzhou350116 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350116 China
Accurate polyp segmentation is crucial for early diagnosis and treatment of colorectal cancer. This is a challenging task for three main reasons: (i) the problem of model overfitting and weak generalization due to the... 详细信息
来源: 评论
An Unsupervised Malicious Web Request Detection based on Transformer and Contrastive Learning
收藏 引用
IEEE Transactions on Network and Service Management 2025年
作者: He, Shiming Zhang, Ying Liang, Diqing Sharma, Pradip Kumar Changsha University of Science and Technology School of Computer Science and Technology Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation Changsha410114 China University of Aberdeen Department of Computing Science AberdeenAB24 3UE United Kingdom
The World Wide Web (Web) is a crucial part of the Internet. Web attacks are becoming more and more serious and complex. Malicious Web request detection aims to rapidly and accurately identify abnormal attacks on the n... 详细信息
来源: 评论
Image Matching Algorithm Under Adverse Conditions Based on SIFT
Image Matching Algorithm Under Adverse Conditions Based on S...
收藏 引用
IEEE International Symposium on Information (IT) in Medicine and Education, ITME
作者: Hao Chen Xinrong Cao Zuoyong Li Lihui Lin College of Computer and Big Data Fuzhou University Fuzhou China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control School of Computer and Big Data Minjiang University Fuzhou China Fujian Key Laboratory of Big Data Application and Intellectualization for Tea Industry School of Mathematics and Computer Science Wuyi University Fujian China
Image matching technology is crucial in computer vision applications. However, the traditional SIFT (Scale-Invariant Feature Transform) algorithm often faces challenges under adverse conditions, such as a high number ... 详细信息
来源: 评论
TF-DTA: A Deep Learning Approach Using Transformer Encoder to Predict Drug-Target Binding Affinity
TF-DTA: A Deep Learning Approach Using Transformer Encoder t...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Wenjun Li Yiqiang Zhou Xiwei Tang Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation Changsha University of Science and Technology Changsha China School of Computer Science Hunan First Normal University Changsha China
Bioinformatics is a rapidly growing field that involves the application of computational methods to analyze and interpret biological data. One important task in bioinformatics is predicting the drug-target affinity (D...
来源: 评论
MFCM-DTI model of multimodal feature fusion: prediction of drug-target interaction
MFCM-DTI model of multimodal feature fusion: prediction of d...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Wenjun Li Wanjun Ma Mengyun Yang Xiwei Tang Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation Changsha University of Science and Technology Changsha China School of Computer Science Hunan First Normal University Changsha China School of Intelligent Manufacturing Hunan First Normal University Changsha China
Drug repositioning is a vital area of biomedicine, where confirming interactions between drugs and specific targets is essential for establishing the efficacy of pharmaceutical agents. Traditional in vitro screening m... 详细信息
来源: 评论
EDSep: An Effective Diffusion-Based Method for Speech Source Separation
EDSep: An Effective Diffusion-Based Method for Speech Source...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal processing, ICASSP 2025
作者: Dong, Jinwei Wang, Xinsheng Mao, Qirong School of Computer Science and Communication Engineering Jiangsu University China Jiangsu Engineering Research Center of Big Data Ubiquitous Perception and Intelligent Agriculture Applications China Provincial Key Laboratory of Computational Intelligence and New Technologies in Low-Altitude Digital Agriculture Zhenjiang China Audio Speech and Language Processing Group School of Computer Science Northwestern Polytechnical University Xi'an China
Generative models have attracted considerable attention for speech separation tasks, and among these, diffusion-based methods are being explored. Despite the notable success of diffusion techniques in generation tasks... 详细信息
来源: 评论
big-Moe: Bypassing Isolated Gating For Generalized Multimodal Face Anti-Spoofing
Big-Moe: Bypassing Isolated Gating For Generalized Multimoda...
收藏 引用
International Conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Yingjie Ma Zitong Yu Xun Lin Weicheng Xie Linlin Shen College of Computer Science and Software Engineering Shenzhen University Great Bay University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Guangdong Provincial Key Laboratory of Intelligent Information Processing
In the domain of facial recognition security, multimodal Face Anti-Spoofing (FAS) is essential for countering presentation attacks. However, existing technologies encounter challenges due to modality biases and imbala... 详细信息
来源: 评论
Learning with Open-world Noisy data via Class-independent Margin in Dual Representation Space
arXiv
收藏 引用
arXiv 2025年
作者: Pan, Linchao Gao, Can Zhou, Jie Wang, Jinbao College of Computer Science and Software Engineering Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China
Learning with Noisy Labels (LNL) aims to improve the model generalization when facing data with noisy labels, and existing methods generally assume that noisy labels come from known classes, called closed-set noise. H... 详细信息
来源: 评论