Crude oil prices (COP) profoundly influence global economic stability, with fluctuations reverberating across various sectors. Accurate forecasting of COP is indispensable for governments, policymakers, and stakeholde...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
Human-machine cooperative control has become an important area of intelligent driving,where driver intention recognition and dynamic control authority allocation are key factors for improving the performance of cooper...
详细信息
Human-machine cooperative control has become an important area of intelligent driving,where driver intention recognition and dynamic control authority allocation are key factors for improving the performance of cooperative decision-making and *** this paper,an online learning method is proposed for human-machine cooperative control,which introduces a priority control parameter in the reward function to achieve optimal allocation of control authority under different driver intentions and driving safety ***,a two-layer LSTM-based sequence prediction algorithm is proposed to recognise the driver's lane change(LC)intention for human-machine cooperative steering ***,an online reinforcement learning method is developed for optimising the steering authority to reduce driver workload and improve driving *** driver-in-the-loop simulation results show that our method can accurately predict the driver's LC intention in cooperative driving and effectively compensate for the driver's non-optimal driving *** experimental results on a real intelligent vehicle further demonstrate the online optimisation capability of the proposed RL-based control authority allocation algorithm and its effectiveness in improving driving safety.
The Internet of Vehicles (IoV) enhances road safety through real-time vehicle-to-vehicle (V2V) communication of traffic messages. However, V2V wireless connectivity poses security and privacy threats, as malicious adv...
详细信息
End-to-end text spotting is a vital computer vision task that aims to integrate scene text detection and recognition into a unified *** methods heavily rely on region-of-interest(Rol)operations to extract local featur...
详细信息
End-to-end text spotting is a vital computer vision task that aims to integrate scene text detection and recognition into a unified *** methods heavily rely on region-of-interest(Rol)operations to extract local features and complex post-processing steps to produce final *** address these limitations,we propose TextFormer,a query-based end-to-end text spotter with a transformer ***,using query embedding per text instance,TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multitask *** allows for mutual training and optimization of classification,segmentation and recognition branches,resulting in deeper feature sharing without sacrificing flexibility or ***,we design an adaptive global aggregation(AGG)module to transfer global features into sequential features for reading arbitrarilyshaped texts,which overcomes the suboptimization problem of Rol ***,potential corpus information is utilized from weak annotations to full labels through mixed supervision,further improving text detection and end-to-end text spotting *** experiments on various bilingual(i.e.,English and Chinese)benchmarks demonstrate the superiority of our *** on the TDA-ReCTS dataset,TextFormer surpasses the state-of-the-art method in terms of 1-NED by 13.2%.
Delay Tolerant Networks (DTNs) have the ability to make communication possible without end-to-end connectivity using store-carry-forward technique. Efficient data dissemination in DTNs is very challenging problem due ...
详细信息
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...
详细信息
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation *** computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end *** of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud *** smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system *** address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog *** framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation *** FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud *** simulation-based executions,tasks are allocated to the nearest available nodes with minimum *** the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of *** successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
The essence of music is inherently multi-modal – with audio and lyrics going hand in hand. However, there is very less research done to study the intricacies of the multi-modal nature of music, and its relation with ...
详细信息
This systematic literature review delves into the dynamic realm of graphical passwords, focusing on the myriad security attacks they face and the diverse countermeasures devised to mitigate these threats. The core obj...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing huma...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing human users from automated ***-based CAPTCHAs,designed to be easily decipherable by humans yet challenging for machines,are a common form of this ***,advancements in deep learning have facilitated the creation of models adept at recognizing these text-based CAPTCHAs with surprising *** our comprehensive investigation into CAPTCHA recognition,we have tailored the renowned UpDown image captioning model specifically for this *** approach innovatively combines an encoder to extract both global and local features,significantly boosting the model’s capability to identify complex details within CAPTCHA *** the decoding phase,we have adopted a refined attention mechanism,integrating enhanced visual attention with dual layers of Long Short-Term Memory(LSTM)networks to elevate CAPTCHA recognition *** rigorous testing across four varied datasets,including those from Weibo,BoC,Gregwar,and Captcha 0.3,demonstrates the versatility and effectiveness of our *** results not only highlight the efficiency of our approach but also offer profound insights into its applicability across different CAPTCHA types,contributing to a deeper understanding of CAPTCHA recognition technology.
暂无评论