咨询与建议

限定检索结果

文献类型

  • 318 篇 会议
  • 165 篇 期刊文献

馆藏范围

  • 483 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 238 篇 工学
    • 169 篇 计算机科学与技术...
    • 135 篇 软件工程
    • 57 篇 信息与通信工程
    • 41 篇 控制科学与工程
    • 40 篇 生物工程
    • 33 篇 光学工程
    • 33 篇 电气工程
    • 28 篇 电子科学与技术(可...
    • 27 篇 生物医学工程(可授...
    • 26 篇 化学工程与技术
    • 18 篇 交通运输工程
    • 18 篇 网络空间安全
    • 17 篇 安全科学与工程
    • 16 篇 动力工程及工程热...
    • 14 篇 机械工程
    • 14 篇 仪器科学与技术
  • 140 篇 理学
    • 52 篇 数学
    • 49 篇 物理学
    • 41 篇 生物学
    • 27 篇 化学
    • 16 篇 统计学(可授理学、...
  • 67 篇 管理学
    • 49 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 22 篇 工商管理
  • 36 篇 医学
    • 28 篇 临床医学
    • 27 篇 基础医学(可授医学...
    • 17 篇 公共卫生与预防医...
    • 16 篇 药学(可授医学、理...
  • 16 篇 法学
    • 14 篇 社会学
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 8 篇 农学
  • 3 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 55 篇 accuracy
  • 34 篇 real-time system...
  • 33 篇 convolutional ne...
  • 31 篇 deep learning
  • 26 篇 machine learning
  • 25 篇 feature extracti...
  • 21 篇 training
  • 20 篇 internet of thin...
  • 18 篇 data models
  • 17 篇 predictive model...
  • 16 篇 security
  • 15 篇 adaptation model...
  • 14 篇 magnetic resonan...
  • 14 篇 computational mo...
  • 13 篇 support vector m...
  • 11 篇 reliability
  • 11 篇 optimization
  • 11 篇 artificial intel...
  • 11 篇 blockchains
  • 11 篇 machine learning...

机构

  • 12 篇 south china univ...
  • 12 篇 department of co...
  • 10 篇 key laboratory o...
  • 10 篇 department of co...
  • 9 篇 information tech...
  • 8 篇 department of bi...
  • 7 篇 department of cs...
  • 7 篇 department of ec...
  • 7 篇 school of comput...
  • 6 篇 department of el...
  • 6 篇 china mobile gro...
  • 6 篇 vel tech rangara...
  • 6 篇 peking universit...
  • 6 篇 department of co...
  • 5 篇 department of da...
  • 5 篇 mit-ibm watson a...
  • 5 篇 department of co...
  • 5 篇 vel tech rangara...
  • 4 篇 department of el...
  • 4 篇 the faculty of m...

作者

  • 16 篇 qu xiaobo
  • 15 篇 guo di
  • 11 篇 wang zi
  • 8 篇 zhou yirong
  • 7 篇 qian chen
  • 7 篇 tan mingkui
  • 6 篇 shanmugasundaram...
  • 6 篇 sajja suneel
  • 6 篇 li thomas h.
  • 5 篇 zhu liuhong
  • 5 篇 liu jun
  • 5 篇 sharmila l.
  • 5 篇 chen peihao
  • 5 篇 zhou jianjun
  • 5 篇 lin jianzhong
  • 5 篇 thomas h. li
  • 5 篇 gan chuang
  • 5 篇 mingkui tan
  • 4 篇 yun jinhyuk
  • 4 篇 park jinseo

语言

  • 449 篇 英文
  • 32 篇 其他
  • 2 篇 中文
检索条件"机构=R&D Observations and Data Technology"
483 条 记 录,以下是421-430 订阅
排序:
Toward Accurate Post-Born-Oppenheimer Molecular Simulations on Quantum Computers: An Adaptive Variational Eigensolver with Nuclear-Electronic Frozen Natural Orbitals
arXiv
收藏 引用
arXiv 2023年
作者: Nykänen, Anton Miller, Aaron Talarico, Walter Knecht, Stefan Kovyrshin, Arseny Skogh, Mårten Tornberg, Lars Broo, Anders Mensa, Stefano Symons, Benjamin C.B. Sahin, Emre Crain, Jason Tavernelli, Ivano Pavošević, Fabijan Algorithmiq Ltd. Kanavakatu 3C HelsinkiFI-00160 Finland School of Physics Trinity College Dublin College Green Dublin 2 Ireland Department of Applied Physics QTF Centre of Excellence Center for Quantum Engineering Aalto University School of Science AaltoFIN-00076 Finland ETH Zürich Department of Chemistry and Applied Life Sciences Vladimir-Prelog-Weg 1-5/10 Zürich8093 Switzerland Data Science and Modelling Pharmaceutical Sciences R&D AstraZeneca Gothenburg Pepparedsleden 1 MolndalSE-431 83 Sweden Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden The Hartree Centre STFC Sci-Tech Daresbury WarringtonWA4 4AD United Kingdom IBM Research Europe Hartree Centre STFC Laboratory Sci-Tech Daresbury WarringtonWA4 4AD United Kingdom Department of Biochemistry University of Oxford OxfordOX1 3QU United Kingdom IBM Quantum IBM Research - Zürich Rüschlikon8803 Switzerland
Nuclear quantum effects such as zero-point energy and hydrogen tunnelling play a central role in many biological and chemical processes. The nuclear-electronic orbital (NEO) approach captures these effects by treating... 详细信息
来源: 评论
Semi-supervised text style transfer: Cross projection in latent space
arXiv
收藏 引用
arXiv 2019年
作者: Shang, Mingyue Li, Piji Fu, Zhenxin Bing, Lidong Zhao, dongyan Shi, Shuming Yan, rui Wangxuan Institute of Computer Technology Peking University China Tencent AI Lab Shenzhen China Center for Data Science China R&D Center Singapore Machine Intelligence Technology Alibaba DAMO Academy
Text style transfer task requires the model to transfer a sentence of one style to another style while retaining its original content meaning, which is a challenging problem that has long suffered from the shortage of... 详细信息
来源: 评论
Traffic Optimization Algorithms in Optical Networks For real Time Traffic Analysis
收藏 引用
Optik 2022年
作者: Suresh Kumar. K Swati Vijay Shinde S. Venkata Lakshmi r.S. Sabeenian Koppisetti durga Bhavani K.V.S.r. Murthy Department of Information Technology Saveetha Engineering College Tamil Nadu India Department of Computer Engineering Pimpri Chinchwad College of Engineering Pune India Dept. of Artificial Intelligence and Data Science Sri Krishna College of Engineering and Technology Coimbatore India Department of ECE Sona College of Technology Salem Department of Management Studies Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India EEE Department & Dean (R&D) Aditya Group of Engineering Colleges
The rapid growth of metropolitan areas poses significant traffic control issues. Advanced telecommunication structures, such as the IoT (Internet of Things) technology, including wireless connections, produce enormous... 详细信息
来源: 评论
review for the Solar radiation Forecasting Methods Based on Machine Learning Approaches
收藏 引用
Journal of Physics: Conference Series 2021年 第4期1964卷
作者: U Hemavathi Ann C V Medona V dhilip Kumar r raja Sekar Department of Computer Science and Engineering Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology Chennai Tamil Nadu India Assistant Professor Department of Artificial Intelligence and Data Science Saveetha Engineering College Chennai Tamil Nadu India
Predictions of solar potential for these systems' production are important, whether they ensure sound activity or the perfect control of an energy discharge heading to the solar system. It is important to base the...
来源: 评论
Machine learning for modelling unstructured grid data in computational physics: A review
收藏 引用
Information Fusion 2025年 123卷
作者: Cheng, Sibo Bocquet, Marc ding, Weiping Finn, Tobias Sebastian Fu, rui Fu, Jinlong Guo, Yike Johnson, Eleda Li, Siyi Liu, Che Moro, Eric Newton Pan, Jie Piggott, Matthew Quilodran, Cesar Sharma, Prakhar Wang, Kun Xiao, dunhui Xue, Xiao Zeng, Yong Zhang, Mingrui Zhou, Hao Zhu, Kewei Arcucci, rossella CEREA ENPC EDF R&D Institut Polytechnique de Paris Île-de-France France School of Artificial Intelligence and Computer Science Nantong University Jiangsu Nantong226019 China School of Mathematical Sciences Key Laboratory of Intelligent Computing and Applications Tongji University Shanghai200092 China Faculty of Data Science City University of Macau 999078 China School of Engineering and Materials Science Faculty of Science and Engineering Queen Mary University of London LondonE1 4NS United Kingdom Zienkiewicz Centre for Modelling Data and AI Faculty of Science and Engineering Swansea University SwanseaSA1 8EN United Kingdom Department of Computer Science and Engineering Hong Kong university of science and technology Hong Kong Department of Earth Science & Engineering Imperial College London LondonSW7 2AZ United Kingdom Tianjin Key Laboratory of Imaging and Sensing Microelectronics Technology School of Microelectronics Tianjin University Tianjin300072 China T2N 1N4 Canada T2N 1N4 Canada Undaunted Grantham Institute for Climate Change and the Environment Imperial College London LondonSW7 2AZ United Kingdom Culham Campus AbingdonOX14 3DB United Kingdom Centre for Computational Science Department of Chemistry University College London LondonWC1H 0AJ United Kingdom H3G 1M8 Canada Australia Department of Chemical Engineering University College London LondonWC1E 6BT United Kingdom
Unstructured grid data are essential for modelling complex geometries and dynamics in computational physics. Yet, their inherent irregularity presents significant challenges for conventional machine learning (ML) tech... 详细信息
来源: 评论
HHMM at semEval-2019 task 2: unsupervised frame induction using contextualized word embeddings
arXiv
收藏 引用
arXiv 2019年
作者: Anwar, Saba Ustalov, dmitry Arefyev, Nikolay Ponzetto, Simone Paolo Biemann, Chris Panchenko, Alexander Language Technology Group Department of Informatics University of Hamburg Germany Skolkovo Institute of Science and Technology Russia Data and Web Science Group University of Mannheim Germany Samsung R&D Institute Russia Lomonosov Moscow State University Russia
We present our system for semantic frame induction that showed the best performance in Subtask B.1 and finished as the runner-up in Subtask A of the SemEval 2019 Task 2 on unsupervised semantic frame induction (Qasemi... 详细信息
来源: 评论
A Sparse Model-inspired deep Thresholding Network for Exponential Signal reconstruction—Application in Fast Biological Spectroscopy
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Zi Guo, di Tu, Zhangren Huang, Yihui Zhou, Yirong Wang, Jian Feng, Liubin Lin, donghai You, Yongfu Agback, Tatiana Orekhov, Vladislav Qu, Xiaobo Department of Electronic Science Biomedical Intelligent Cloud R&D Center Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance National Institute for Data Science in Health and Medicine Xiamen University China School of Computer and Information Engineering Xiamen University of Technology Xiamen China College of Chemistry and Chemical Engineering Key Laboratory for Chemical Biology of Fujian Province High-field NMR Center Xiamen University Xiamen China China Mobile Group Xiamen China Biomedical Intelligent Cloud R&D Center Xiamen University Xiamen China Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden Department of Chemistry and Molecular Biology University of Gothenburg Gothenburg Sweden
The non-uniform sampling is a powerful approach to enable fast acquisition but requires sophisticated reconstruction algorithms. Faithful reconstruction from partial sampled exponentials is highly expected in general ... 详细信息
来源: 评论
defect engineering approaches for metal oxide semiconductor-based chemiresistive gas sensing
收藏 引用
Coordination Chemistry reviews 2025年 541卷
作者: Amit Kumar Julaiba Tahsina Mazumder Kenza Joyen Frédéric Favier Ali Mirzaei Jin-Young Kim Monika Kwoka Mikhael Bechelany ravindra Kumar Jha Mahesh Kumar Hyoun Woo Kim Sang Sub Kim Department of Electrical Engineering Indian Institute of Technology Jodhpur Jodhpur 342030 India Department of Electronics Assam Skill University Mangaldai Assam 784125 India European Institut of Membranes (IEM) – UMR 5635 University of Montpellier ENSCM CNRS 34090 Montpellier France Institut Charles Gerhardt Montpellier (ICGM) – UMR 5253 University of Montpellier ENSCM CNRS 34090 Montpellier France Department of Materials Science and Engineering Shiraz University of Technology Shiraz 715557-13876 Islamic Republic of Iran Customized manufacturing R&D department Korea Institute of Industrial Technology Gyeonggi-do 15014 South Korea Department of Cybernetics Nanotechnology and Data Processing Faculty of Automatic Control Electronics and Computer Science Silesian University of Technology Akademicka 16 44-100 Gliwice Poland Functional Materials Group Gulf University for Science and Technology (GUST) Mubarak Al-Abdullah 32093 Kuwait Department of Electronics and Electrical Engineering & Centre for Intelligent Cyber-Physical Systems Indian Institute of Technology Guwahati Guwahati 781039 India Division of Materials Science and Engineering Hanyang University Seoul 04763 South Korea Department of Materials Science and Engineering Inha University Incheon 22212 South Korea
defect engineering in metal oxides presents a promising approach for tailoring material properties. This strategy enhances gas sorption, catalysis, and control over key physical characteristics such as bandgap, magnet... 详细信息
来源: 评论
retracted: Artificial intelligence point-to-point signal communication network optimization based on ubiquitous clouds
收藏 引用
International Journal of Communication Systems 2020年 第6期34卷
作者: Lin Hong Lianbing deng daming Li Harry Haoxiang Wang School of Management Beijing Normal University at Zhuhai Zhuhai China The Post-Doctoral Research Center Zhuhai Da Hengqin Science and Technology Development Co. Ltd Zhuhai China Department of R&D Guangdong Qinzhi Science and Technology Research Institute Zhuhai China Department of R&D Huazhong University of Science and Technology Wuhan China Institute of Data Science City University of Macau Macau China Department of R&D GoPerception Laboratory Ithaca New York USA
At present, the application of communication network has spread to every area of social life. The progress of network technology has driven the development of information technology industry and the advancement of clo... 详细信息
来源: 评论
Accelerated MrI reconstruction with separable and enhanced low-rank Hankel regularization
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Xinlin Lu, Hengfa Guo, di Lai, Zongying Ye, Huihui Peng, Xi Zhao, Bo Qu, Xiaobo Biomedical Intelligent Cloud R&D Center Department of Electronic Science National Institute for Data Science in Health and Medicine Xiamen University Xiamen361105 China The Department of Biomedical Engineering University of Texas at Austin AustinTX78712 United States The School of Computer and Information Engineering Xiamen University of Technology Xiamen361021 China The School of Information Engineering Jimei University Xiamen361024 China The State of Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou310058 China The Department of Radiology Mayo Clinic RochesterMN55902 United States The Department of Biomedical Engineering Oden Institute for Computational Engineering and Sciences University of Texas at Austin AustinTX78712 United States
The combination of the sparse sampling and the low-rank structured matrix reconstruction has shown promising performance, enabling a significant reduction of the magnetic resonance imaging data acquisition time. Howev... 详细信息
来源: 评论