咨询与建议

限定检索结果

文献类型

  • 102 篇 会议
  • 96 篇 期刊文献

馆藏范围

  • 198 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 167 篇 工学
    • 119 篇 计算机科学与技术...
    • 105 篇 电气工程
    • 35 篇 软件工程
    • 23 篇 信息与通信工程
    • 12 篇 机械工程
    • 8 篇 生物工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 3 篇 仪器科学与技术
    • 3 篇 控制科学与工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
    • 1 篇 纺织科学与工程
  • 28 篇 医学
    • 27 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 15 篇 理学
    • 9 篇 生物学
    • 3 篇 数学
    • 3 篇 物理学
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 7 篇 管理学
    • 5 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 文学
    • 1 篇 外国语言文学

主题

  • 17 篇 feature extracti...
  • 15 篇 training
  • 14 篇 deep learning
  • 12 篇 semantics
  • 8 篇 task analysis
  • 8 篇 face recognition
  • 8 篇 optimization
  • 6 篇 image quality as...
  • 6 篇 visualization
  • 6 篇 image compressio...
  • 5 篇 image segmentati...
  • 5 篇 cameras
  • 5 篇 hashing
  • 5 篇 image retrieval
  • 5 篇 image coding
  • 5 篇 quantization (si...
  • 5 篇 faces
  • 5 篇 encoding
  • 5 篇 image reconstruc...
  • 5 篇 robustness

机构

  • 46 篇 nanyang technol ...
  • 37 篇 nanyang technol ...
  • 29 篇 nanyang technol ...
  • 24 篇 rapid-rich objec...
  • 19 篇 nanyang technol ...
  • 19 篇 peking univ inst...
  • 16 篇 nanyang technol ...
  • 12 篇 peking univ inst...
  • 10 篇 city univ hong k...
  • 9 篇 school of electr...
  • 9 篇 school of comput...
  • 9 篇 nanyang technol ...
  • 8 篇 nanyang technol ...
  • 8 篇 tsinghua univ de...
  • 7 篇 rapid-rich objec...
  • 6 篇 wuhan univ techn...
  • 6 篇 harbin inst tech...
  • 6 篇 city univ hong k...
  • 5 篇 rapid-rich objec...
  • 5 篇 rapid-rich objec...

作者

  • 44 篇 kot alex c.
  • 40 篇 wang shiqi
  • 33 篇 zhang xinfeng
  • 28 篇 ma siwei
  • 21 篇 gao wen
  • 20 篇 li haoliang
  • 16 篇 lin weisi
  • 13 篇 tan yap-peng
  • 13 篇 duan ling-yu
  • 12 篇 alex c. kot
  • 12 篇 lu jiwen
  • 11 篇 liong venice eri...
  • 10 篇 kot alex
  • 10 篇 yang siyuan
  • 10 篇 yang wenhan
  • 9 篇 wang yufei
  • 9 篇 wang shanshe
  • 8 篇 zhong xian
  • 8 篇 wang yan
  • 8 篇 xiong ruiqin

语言

  • 197 篇 英文
  • 1 篇 其他
检索条件"机构=Rapid-Rich Object Search Lab"
198 条 记 录,以下是31-40 订阅
排序:
Discovering Primary objects in Videos by Saliency Fusion and Iterative Appearance Estimation
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2016年 第6期26卷 1070-1083页
作者: Yang, Jiong Zhao, Gangqiang Yuan, Junsong Shen, Xiaohui Lin, Zhe Price, Brian Brandt, Jonathan Nanyang Technol Univ Rapid Rich Object Search Lab Singapore 637553 Singapore Nanyang Technol Univ Dept Elect & Elect Engn Singapore 639798 Singapore Adobe Res San Jose CA 95110 USA
In this paper, we propose a new method for detecting primary objects in unconstrained videos in a completely automatic setting. Here, we define the primary object in a video as the object that presents saliently in mo... 详细信息
来源: 评论
Multitask Person Re-Identification using Homoscedastic Uncertainty Learning
Multitask Person Re-Identification using Homoscedastic Uncer...
收藏 引用
IEEE International Symposium on Circuits and Systems (IEEE ISCAS)
作者: Tay, Chiat-Pin Roy, Sharmili Yap, Kim-Hui Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore Nanyang Technol Univ Rapid Rich Object Search Lab Singapore Singapore
In this paper, we propose a new multitask neural network called Part Attribute Loss Net (PALNet) for person re-identification (re-id) with homoscedastic uncertainty learning. Currently, many person re-id algorithms us... 详细信息
来源: 评论
Image quality assessment based on multi-scale representation of structure
收藏 引用
DIGITAL SIGNAL PROCESSING 2014年 33卷 125-133页
作者: Qian, Jiansheng Wu, Dong Li, Leida Cheng, Deqiang Wang, Xuesong China Univ Min & Technol Sch Informat & Elect Engn Xuzhou 221116 Peoples R China Nanyang Technol Univ Sch Elect & Elect Engn Rapid Rich Object Search ROSE Lab Singapore 639798 Singapore
This paper presents an image quality assessment algorithm using representation of image structures in scale space. It is based on the finding that difference-of-Gaussian (DOG) can capture the structures of an image wi... 详细信息
来源: 评论
Heterogeneous Transfer Learning via Deep Matrix Completion with Adversarial Kernel Embedding  33
Heterogeneous Transfer Learning via Deep Matrix Completion w...
收藏 引用
33rd AAAI Conference on Artificial Intelligence / 31st Innovative Applications of Artificial Intelligence Conference / 9th AAAI Symposium on Educational Advances in Artificial Intelligence
作者: Li, Haoliang Pan, Sinno Jialin Wan, Renjie Kot, Alex C. Nanyang Technol Univ Rapid Rich Object Search ROSE Lab Singapore Singapore Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore
Heterogeneous Transfer Learning (HTL) aims to solve transfer learning problems where a source domain and a target domain are of heterogeneous types of features. Most existing HTL approaches either explicitly learn fea... 详细信息
来源: 评论
Improving Robustness of DNNs against Common Corruptions via Gaussian Adversarial Training
Improving Robustness of DNNs against Common Corruptions via ...
收藏 引用
IEEE International Conference on Visual Communications and Image Processing (VCIP)
作者: Yi, Chenyu Li, Haoliang Wan, Renjie Kot, Alex C. Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore Nanyang Technol Univ Rapid Rich Object Search ROSE Lab Singapore Singapore
Deep neural networks have demonstrated tremendous success in image classification, but their performance sharply degrades when evaluated on slightly different test data (e.g., data with corruptions). To address these ... 详细信息
来源: 评论
AANet: Attribute Attention Network for Person Re-Identifications  32
AANet: Attribute Attention Network for Person Re-Identificat...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Tay, Chiat-Pin Roy, Sharmili Yap, Kim-Hui Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore Nanyang Technol Univ Rapid Rich Object Search Lab Singapore Singapore
This paper proposes Attribute Attention Network (AANet), a new architecture that integrates person attributes and attribute attention maps into a classification framework to solve the person re-identification (re-ID) ... 详细信息
来源: 评论
An Adaptive Tuning Sparse Fast Fourier Transform  18th
An Adaptive Tuning Sparse Fast Fourier Transform
收藏 引用
18th Pacific-Rim Conference on Multimedia (PCM)
作者: Shi, Sheng Yang, Runkai Zhang, Xinfeng You, Haihang Fan, Dongrui Chinese Acad Sci Inst Comp Technol Beijing Peoples R China Nanyang Technol Univ Rapid Rich Object Search Lab Singapore Singapore
The Sparse Fast Fourier Transform (SFFT) is a novel algorithm for discrete Fourier transforms on signals with the sparsity in frequency domain. A reference implementation of the algorithm has been proven to be faster ... 详细信息
来源: 评论
Registration of Under-Sampled Images via Higher Resolution Spectrum Restoration
Registration of Under-Sampled Images via Higher Resolution S...
收藏 引用
IEEE Visual Communications and Image Processing (VCIP) Conference
作者: Song, Qiang Xiong, Ruiqin Zhang, Xinfeng Ma, Siwci Gao, Wen Peking Univ Inst Digital Media Beijing 100871 Peoples R China Nanyang Technol Univ Rapid Rich Object Search Lab Singapore Singapore
High accuracy image registration is critical for the success of multi-frame super-resolution. Conventionally, the shift between images are estimated directly based on the undersampled low-resolution (LR) image data. H... 详细信息
来源: 评论
Exploiting the Relationship Between Kendall's Rank Correlation and Cosine Similarity for Attribution Protection  36
Exploiting the Relationship Between Kendall's Rank Correlati...
收藏 引用
36th Conference on Neural Information Processing Systems (NeurIPS)
作者: Wang, Fan Kong, Adams Wai-Kin Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore Nanyang Technol Univ Rapid Rich Object Search ROSE Lab IGP Singapore Singapore
Model attributions are important in deep neural networks as they aid practitioners in understanding the models, but recent studies reveal that attributions can be easily perturbed by adding imperceptible noise to the ... 详细信息
来源: 评论
ABANDONED object DETECTION USING PIXEL-BASED FINITE STATE MACHINE AND SINGLE SHOT MULTIBOX DETECTOR
ABANDONED OBJECT DETECTION USING PIXEL-BASED FINITE STATE MA...
收藏 引用
IEEE International Conference on Multimedia and Expo (IEEE ICME)
作者: Shyam, Devadeep Kot, Alex Athalye, Chinmayee Nanyang Technol Univ Rapid Rich Object Search ROSE Lab Singapore Singapore Coll Engn Pune Elect & Telecommun Engg Pune Maharashtra India
This paper proposes a robust, scalable framework for automatic detection of abandoned, stationary objects in real time surveillance videos that can pose a security threat. We use the sViBe background modeling method t... 详细信息
来源: 评论