咨询与建议

限定检索结果

文献类型

  • 140 篇 会议
  • 128 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 277 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 119 篇 计算机科学与技术...
    • 107 篇 软件工程
    • 49 篇 信息与通信工程
    • 36 篇 光学工程
    • 30 篇 生物工程
    • 29 篇 生物医学工程(可授...
    • 26 篇 机械工程
    • 22 篇 电气工程
    • 21 篇 控制科学与工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 5 篇 交通运输工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 冶金工程
  • 113 篇 理学
    • 45 篇 物理学
    • 37 篇 数学
    • 37 篇 生物学
    • 18 篇 化学
    • 10 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 44 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 21 篇 医学
    • 20 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 4 篇 艺术学
    • 4 篇 设计学(可授艺术学...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 文学
  • 2 篇 教育学
  • 1 篇 农学

主题

  • 24 篇 pattern recognit...
  • 16 篇 image segmentati...
  • 14 篇 feature extracti...
  • 14 篇 computer vision
  • 13 篇 face recognition
  • 11 篇 convolution
  • 11 篇 training
  • 11 篇 character recogn...
  • 10 篇 databases
  • 9 篇 optical characte...
  • 9 篇 image recognitio...
  • 8 篇 visualization
  • 8 篇 semantics
  • 7 篇 support vector m...
  • 7 篇 text recognition
  • 7 篇 artificial intel...
  • 6 篇 computational mo...
  • 6 篇 face
  • 6 篇 image color anal...
  • 6 篇 image reconstruc...

机构

  • 17 篇 sensetime resear...
  • 15 篇 university of ch...
  • 13 篇 national laborat...
  • 12 篇 computer vision ...
  • 9 篇 shenzhen key lab...
  • 9 篇 center for resea...
  • 7 篇 siat branch shen...
  • 7 篇 future technolog...
  • 6 篇 institute of res...
  • 6 篇 shanghai ai labo...
  • 6 篇 pattern recognit...
  • 5 篇 pattern recognit...
  • 5 篇 tsinghua univers...
  • 5 篇 pattern analysis...
  • 5 篇 shenzhen key lab...
  • 5 篇 qing yuan resear...
  • 5 篇 computer vision ...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of medici...

作者

  • 15 篇 qiao yu
  • 13 篇 pal umapada
  • 11 篇 hosseinzadeh meh...
  • 9 篇 umapada pal
  • 9 篇 maier andreas
  • 9 篇 li stan z.
  • 9 篇 stan z. li
  • 9 篇 rahmani amir mas...
  • 8 篇 murino vittorio
  • 8 篇 ren jimmy s.
  • 7 篇 li hongsheng
  • 7 篇 lee sang-woong
  • 6 篇 zhou jie
  • 6 篇 li peng
  • 6 篇 he junjun
  • 6 篇 wan jun
  • 6 篇 lin yankai
  • 6 篇 dong chao
  • 5 篇 guo guodong
  • 5 篇 yousefpoor moham...

语言

  • 271 篇 英文
  • 3 篇 其他
  • 3 篇 中文
检索条件"机构=Research Center for Computer Vision and Pattern Recognition"
277 条 记 录,以下是171-180 订阅
排序:
Cooperative training of deep aggregation networks for RGB-D action recognition
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Pichao Li, Wanqing Wan, Jun Ogunbona, Philip Liu, Xinwang Advanced Multimedia Research Lab University of Wollongong Australia Motovis Inc Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences School of Computer Science National University of Defense Technology Changsha410073 China
A novel deep neural network training paradigm that exploits the conjoint information in multiple heterogeneous sources is proposed. Specifically, in a RGB-D based action recognition task, it cooperatively trains a sin... 详细信息
来源: 评论
Transactions on Edutainment IV  1
收藏 引用
丛书名: Lecture Notes in computer Science
1000年
作者: Zhigeng Pan Adrian David Cheok Wolfgang Müller Xiaopeng Zhang Kevin Wong
E-learning and digital entertainment techniques, tools and systems are becoming popular and can be found in many real-world educational applications in many co- tries. The driving force behind these technologies is th... 详细信息
来源: 评论
Beyond bag of words: Image representation in sub-semantic space  13
Beyond bag of words: Image representation in sub-semantic sp...
收藏 引用
21st ACM International Conference on Multimedia, MM 2013
作者: Zhang, Chunjie Wang, Shuhui Liang, Chao Liu, Jing Huang, Qingming Li, Haojie Tian, Qi School of Computer and Control Engineering University of Chinese Academy of Sciences 100049 Beijing China Key Lab of Intell. Info. Process Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China School of Computer National Engineering Research Center for Multimedia Software Wuhan University 430072 Wuhan China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China School of Software Dalian University of Technology Liaoning China Department of Computer Sciences University of Texas San Antonio TX 78249 United States
Due to the semantic gap, the low-level features are not able to semantically represent images well. Besides, traditional semantic related image representation may not be able to cope with large inter class variations ... 详细信息
来源: 评论
Fine-grained image classification using color exemplar classifiers
Fine-grained image classification using color exemplar class...
收藏 引用
14th Pacific-Rim Conference on Multimedia, PCM 2013
作者: Zhang, Chunjie Xiong, Wei Liu, Jing Zhang, Yifan Liang, Chao Huang, Qingming School of Computer and Control Engineering University of Chinese Academy of Sciences 100049 Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences P.O. Box 2728 Beijing China National Engineering Research Center for Multimedia Software Wuhan University 430072 Wuhan China Key Lab of Intell. Info. Process Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China
The use of local features has demonstrated its effectiveness for many visual applications. However, local features are often extracted with gray images. This ignores the useful information within different color chann... 详细信息
来源: 评论
Unsupervised detection of small hyperreflective features in ultrahigh resolution optical coherence tomography
arXiv
收藏 引用
arXiv 2023年
作者: Reimann, Marcel Won, Jungeun Takahashi, Hiroyuki Yaghy, Antonio Hwang, Yunchan Ploner, Stefan Lin, Junhong Girgis, Jessica Lam, Kenneth Chen, Siyu Waheed, Nadia K. Maier, Andreas Fujimoto, James G. Department of Electrical Engineering and Computer Science Research Laboratory of Electronics Massachusetts Institute of Technology United States Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany New England Eye Center Tufts Medical Center United States
Recent advances in optical coherence tomography such as the development of high speed ultrahigh resolution scanners and corresponding signal processing techniques may reveal new potential biomarkers in retinal disease... 详细信息
来源: 评论
Word segmentation in handwritten Korean text lines based on gap clustering techniques
Word segmentation in handwritten Korean text lines based on ...
收藏 引用
International Conference on Document Analysis and recognition
作者: S.H. Kim S. Jeong Guee-Sang Lee C.Y. Suen Center for Pattern Recognition and Machine Intelligence Concordia University Montreal QUE Canada Postal Technology Development Department Electronics and Telecommunications Research Institute Daejeon South Korea Department of Computer Science Chonnam National University Gwangju South Korea
We propose a word segmentation method for handwritten Korean text lines. It uses gap information to separate a text line into word units, where the gap is defined as a white-run obtained after a vertical projection of... 详细信息
来源: 评论
Feature refinement: An expression-specific feature learning and fusion method for micro-expression recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Ling Mao, Qirong Huang, Xiaohua Zhang, Feifei Zhang, Zhihong School of Computer Science and Communication Engineering Jiangsu University ZhenjiangJiangsu212013 China School of Computer Engineering Nanjing Institute of Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Xiamen University Xiamen China Center for Machine Vision and Signal Analysis University of Oulu Finland
Micro-Expression recognition has become challenging, as it is extremely difficult to extract the subtle facial changes of micro-expressions. Recently, several approaches proposed several expression-shared features alg... 详细信息
来源: 评论
Multiple domain experts collaborative learning: Multi-source domain generalization for person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Zhu, Feng Chen, Dapeng Zhao, Rui Chen, Haobin Zhu, Jinguo Tang, Shixiang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China
Recent years have witnessed significant progress in person re-identification (ReID). However, current ReID approaches still suffer from considerable performance degradation when unseen testing domains exhibit differen... 详细信息
来源: 评论
Session-based recommendation with graph neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Wu, Shu Tang, Yuyuan Zhu, Yanqiao Wang, Liang Xie, Xing Tan, Tieniu Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences University of Chinese Academy of Sciences School of Computer and Communication Engineering University of Science and Technology Beijing School of Software Engineering Tongji University Microsoft Research Asia
The problem of session-based recommendation aims to predict user actions based on anonymous sessions. Previous methods model a session as a sequence and estimate user representations besides item representations to ma... 详细信息
来源: 评论
The Devil is in the Conflict: Disentangled Information Graph Neural Networks For Fraud Detection
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zhixun Chen, Dingshuo Liu, Qiang Wu, Shu School of Computer Science and Technology Beijing Institute of Technology China Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China
Graph-based fraud detection has heretofore received considerable attention. Owning to the great success of Graph Neural Networks (GNNs), many approaches adopting GNNs for fraud detection has been gaining momentum. How... 详细信息
来源: 评论