咨询与建议

限定检索结果

文献类型

  • 140 篇 会议
  • 131 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 280 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 179 篇 工学
    • 118 篇 计算机科学与技术...
    • 105 篇 软件工程
    • 47 篇 信息与通信工程
    • 35 篇 光学工程
    • 29 篇 生物工程
    • 28 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 20 篇 控制科学与工程
    • 19 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 5 篇 交通运输工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 冶金工程
  • 110 篇 理学
    • 43 篇 物理学
    • 37 篇 数学
    • 36 篇 生物学
    • 18 篇 化学
    • 10 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 46 篇 管理学
    • 26 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 22 篇 医学
    • 20 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 4 篇 艺术学
    • 4 篇 设计学(可授艺术学...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 文学
  • 2 篇 教育学
  • 1 篇 农学

主题

  • 24 篇 pattern recognit...
  • 16 篇 image segmentati...
  • 14 篇 computer vision
  • 13 篇 face recognition
  • 13 篇 feature extracti...
  • 11 篇 convolution
  • 11 篇 character recogn...
  • 10 篇 databases
  • 10 篇 training
  • 9 篇 optical characte...
  • 9 篇 image recognitio...
  • 8 篇 visualization
  • 8 篇 semantics
  • 7 篇 support vector m...
  • 7 篇 text recognition
  • 7 篇 artificial intel...
  • 6 篇 face
  • 6 篇 image color anal...
  • 6 篇 robustness
  • 5 篇 hidden markov mo...

机构

  • 16 篇 sensetime resear...
  • 15 篇 university of ch...
  • 13 篇 national laborat...
  • 12 篇 computer vision ...
  • 9 篇 shenzhen key lab...
  • 9 篇 center for resea...
  • 8 篇 future technolog...
  • 7 篇 siat branch shen...
  • 6 篇 shanghai ai labo...
  • 6 篇 pattern recognit...
  • 5 篇 pattern recognit...
  • 5 篇 tsinghua univers...
  • 5 篇 pattern analysis...
  • 5 篇 shenzhen key lab...
  • 5 篇 computer vision ...
  • 5 篇 school of artifi...
  • 5 篇 institute of res...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of medici...
  • 4 篇 pattern recognit...

作者

  • 14 篇 qiao yu
  • 13 篇 pal umapada
  • 10 篇 hosseinzadeh meh...
  • 9 篇 umapada pal
  • 9 篇 maier andreas
  • 9 篇 li stan z.
  • 9 篇 stan z. li
  • 8 篇 murino vittorio
  • 8 篇 lee sang-woong
  • 8 篇 rahmani amir mas...
  • 8 篇 ren jimmy s.
  • 7 篇 li hongsheng
  • 6 篇 zhou jie
  • 6 篇 li peng
  • 6 篇 yousefpoor moham...
  • 6 篇 he junjun
  • 6 篇 wan jun
  • 6 篇 lin yankai
  • 6 篇 dong chao
  • 6 篇 yousefpoor efat

语言

  • 273 篇 英文
  • 4 篇 其他
  • 3 篇 中文
检索条件"机构=Research Center for Computer Vision and Pattern Recognition"
280 条 记 录,以下是51-60 订阅
A Survey of the Self Supervised Learning Mechanisms for vision Transformers
arXiv
收藏 引用
arXiv 2024年
作者: Khan, Asifullah Sohail, Anabia Fiaz, Mustansar Hassan, Mehdi Afridi, Tariq Habib Marwat, Sibghat Ullah Munir, Farzeen Ali, Safdar Naseem, Hannan Zaheer, Muhammad Zaigham Ali, Kamran Sultana, Tangina Tanoli, Ziaurrehman Akhter, Naeem Pattern Recognition Lab DCIS PIEAS Nilore Islamabad45650 Pakistan PIEAS Nilore Islamabad45650 Pakistan Deep Learning Lab Center for Mathematical Sciences PIEAS Nilore Islamabad45650 Pakistan Center of Secure Cyber-Physical Security Systems Khalifa University Abu Dhabi United Arab Emirates IBM Research United States Department of Computer Science Air University Islamabad Pakistan Department of Computer Science and Engineering Kyung Hee University Global Campus 1732 Gyeonggi-do Yongin17104 Korea Republic of Department of Electrical Engineering and Automation Aalto University Finland Finnish Center of Artificial Center Finland Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman Malaysia Computer Vision Department Mohamed Bin Zayed University of Artificial Intelligence United Arab Emirates Karachi Pakistan Department of Electronics and Communication Engineering Hajee Mohammad Danesh Science and Technology University Bangladesh HiLIFE University of Helsinki Finland
vision Transformers (ViTs) have recently demonstrated remarkable performance in computer vision tasks. However, their parameter-intensive nature and reliance on large amounts of data for effective performance have shi... 详细信息
来源: 评论
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
RecycleNet: Latent Feature Recycling Leads to Iterative Deci...
收藏 引用
IEEE Workshop on Applications of computer vision (WACV)
作者: Gregor Koehler Tassilo Wald Constantin Ulrich David Zimmerer Paul F. Jaeger Jörg K. H. Franke Simon Kohl Fabian Isensee Klaus H. Maier-Hein Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Information and Data Science School for Health Karlsruhe/Heidelberg Germany Helmholtz Imaging DKFZ National Center for Tumor Diseases (NCT) NCT Heidelberg a Partnership Between DKFZ University Medical Center Heidelberg Interactive Machine Learning Group DKFZ Machine Learning Lab University of Freiburg Freiburg Germany Latent Labs (***) London UK Applied Computer Vision Lab DKFZ Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu...
来源: 评论
RBF-Softmax: Learning Deep Representative Prototypes with Radial Basis Function Softmax  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Zhang, Xiao Zhao, Rui Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Lab The Chinese University of Hong Kong Hong Kong SenseTime Research Hong Kong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Deep neural networks have achieved remarkable successes in learning feature representations for visual classification. However, deep features learned by the softmax cross-entropy loss generally show excessive intra-cl... 详细信息
来源: 评论
Transductive zero-shot learning by decoupled feature generation
arXiv
收藏 引用
arXiv 2021年
作者: Marmoreo, Federico Cavazza, Jacopo Murino, Vittorio Pattern Analysis and Computer Vision Istituto Italiano di Tecnologia Italy University of Genova Italy Huawei Technologies Ltd. Ireland Research Center Ireland Department of Computer Science University of Verona Italy
In this paper, we address zero-shot learning (ZSL), the problem of recognizing categories for which no labeled visual data are available during training. We focus on the transductive setting, in which unlabelled visua... 详细信息
来源: 评论
Leveraging Acoustic Images for Effective Self-supervised Audio Representation Learning  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Sanguineti, Valentina Morerio, Pietro Pozzetti, Niccolò Greco, Danilo Cristani, Marco Murino, Vittorio Pattern Analysis and Computer Vision Istituto Italiano di Tecnologia Genoa Italy University of Genova Genoa Italy Huawei Technologies Ltd. Ireland Research Center Dublin Ireland University of Verona Verona Italy
In this paper, we propose the use of a new modality characterized by a richer information content, namely acoustic images, for the sake of audio-visual scene understanding. Each pixel in such images is characterized b... 详细信息
来源: 评论
GAN-based Facial Attribute Manipulation
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yunfan Li, Qi Deng, Qiyao Sun, Zhenan Yang, Ming-Hsuan The School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100049 China The National Laboratory of Pattern Recognition Center for Research on Intelligent Perception and Computing Institute of Automation Chinese Academy of Sciences Beijing100190 China The Center for Research on Intelligent Perception and Computing Institute of Automation Chinese Academy of Sciences Beijing100190 China The Department of Computer Science and Engineering University of California MercedCA95340 United States
Facial Attribute Manipulation (FAM) aims to aesthetically modify a given face image to render desired attributes, which has received significant attention due to its broad practical applications ranging from digital e... 详细信息
来源: 评论
UniFormer: Unifying Convolution and Self-attention for Visual recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Kunchang Wang, Yali Zhang, Junhao Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China National University of Singapore Singapore Shanghai Artificial Intelligence Laboratory China SenseTime Research China The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision t... 详细信息
来源: 评论
RFN-Nest: An end-to-end residual fusion network for infrared and visible images
arXiv
收藏 引用
arXiv 2021年
作者: Li, Hui Wu, Xiao-Jun Kittler, Josef Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China The Center for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
In the image fusion field, the design of deep learning-based fusion methods is far from routine. It is invariably fusion-task specific and requires a careful consideration. The most difficult part of the design is to ... 详细信息
来源: 评论
Landmark-RxR: solving vision-and-language navigation with fine-grained alignment supervision  21
Landmark-RxR: solving vision-and-language navigation with fi...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Keji He Yan Huang Qi Wu Jianhua Yang Dong An Shuanglin Sima Liang Wang Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences and School of Artificial Intelligence University of Chinese Academy of Sciences School of Computer Science University of Adelaide School of Artificial Intelligence Beijing University of Posts and Telecommunications Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences and School of Future Technology University of Chinese Academy of Sciences Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences and School of Artificial Intelligence University of Chinese Academy of Sciences and Center for Excellence in Brain Science and Intelligence Technology (CEBSIT) and Chinese Academy of Sciences Artificial Intelligence Research (CAS-AIR)
In vision-and-Language Navigation (VLN) task, an agent is asked to navigate inside 3D indoor environments following given instructions. Cross-modal alignment is one of the most critical challenges in VLN because the p...
来源: 评论
ELLE: Efficient Lifelong Pre-training for Emerging Data
arXiv
收藏 引用
arXiv 2022年
作者: Qin, Yujia Zhang, Jiajie Lin, Yankai Liu, Zhiyuan Li, Peng Sun, Maosong Zhou, Jie Department of Computer Science and Technology Tsinghua University Beijing China Beijing National Research Center for Information Science and Technology China Institute for Artificial Intelligence Tsinghua University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China International Innovation Center of Tsinghua University Shanghai China Beijing Academy of Artificial Intelligence China Tsinghua University China Jiangsu Collaborative Innovation Center for Language Ability Xuzhou China
Current pre-trained language models (PLM) are typically trained with static data, ignoring that in real-world scenarios, streaming data of various sources may continuously grow. This requires PLMs to integrate the inf... 详细信息
来源: 评论