咨询与建议

限定检索结果

文献类型

  • 281 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 306 篇 工学
    • 214 篇 计算机科学与技术...
    • 187 篇 软件工程
    • 52 篇 控制科学与工程
    • 50 篇 信息与通信工程
    • 40 篇 生物工程
    • 38 篇 光学工程
    • 34 篇 电气工程
    • 25 篇 生物医学工程(可授...
    • 24 篇 机械工程
    • 21 篇 电子科学与技术(可...
    • 20 篇 交通运输工程
    • 18 篇 材料科学与工程(可...
    • 13 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 10 篇 安全科学与工程
    • 7 篇 动力工程及工程热...
    • 7 篇 土木工程
  • 162 篇 理学
    • 80 篇 数学
    • 53 篇 物理学
    • 45 篇 生物学
    • 28 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 系统科学
  • 94 篇 管理学
    • 59 篇 管理科学与工程(可...
    • 39 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 31 篇 医学
    • 26 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 11 篇 法学
    • 9 篇 社会学
  • 5 篇 经济学
  • 5 篇 农学
  • 2 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 16 篇 deep learning
  • 14 篇 reinforcement le...
  • 12 篇 semantics
  • 12 篇 feature extracti...
  • 10 篇 machine learning
  • 10 篇 training
  • 9 篇 image segmentati...
  • 9 篇 predictive model...
  • 8 篇 artificial intel...
  • 8 篇 intelligent syst...
  • 7 篇 computer science
  • 7 篇 scalability
  • 7 篇 semantic segment...
  • 7 篇 task analysis
  • 7 篇 three-dimensiona...
  • 7 篇 convolution
  • 7 篇 laboratories
  • 7 篇 trajectory
  • 7 篇 correlation
  • 6 篇 automation

机构

  • 52 篇 school of artifi...
  • 28 篇 beijing engineer...
  • 28 篇 guangdong engine...
  • 25 篇 university of ch...
  • 19 篇 state key labora...
  • 18 篇 qingdao academy ...
  • 14 篇 center for resea...
  • 14 篇 the state key la...
  • 14 篇 state key labora...
  • 13 篇 ieee
  • 10 篇 cloud computing ...
  • 10 篇 state key labora...
  • 10 篇 state key labora...
  • 9 篇 intelligent manu...
  • 9 篇 the beijing engi...
  • 9 篇 the state key la...
  • 8 篇 beijing national...
  • 8 篇 department of co...
  • 7 篇 school of comput...
  • 7 篇 state key labora...

作者

  • 57 篇 gang xiong
  • 34 篇 xiong gang
  • 29 篇 zhen shen
  • 20 篇 xisong dong
  • 19 篇 fei-yue wang
  • 18 篇 shen zhen
  • 17 篇 dong xisong
  • 13 篇 xiuqin shang
  • 13 篇 fenghua zhu
  • 13 篇 fan rui
  • 13 篇 wang lihui
  • 12 篇 hu xiaolin
  • 11 篇 sun maosong
  • 10 篇 bin hu
  • 10 篇 liu yang
  • 9 篇 wang liang
  • 9 篇 shichao chen
  • 8 篇 zhu fenghua
  • 8 篇 liu qiang
  • 8 篇 wu shu

语言

  • 454 篇 英文
  • 17 篇 其他
  • 9 篇 中文
检索条件"机构=Research Center for Intelligent Computing Systems State Key Laboratory of Computer Architecture"
480 条 记 录,以下是191-200 订阅
排序:
DropPos: pre-training vision transformers by reconstructing dropped positions  23
DropPos: pre-training vision transformers by reconstructing ...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing systems
作者: Haochen Wang Junsong Fan Yuxi Wang Kaiyou Song Tong Wang Zhaoxiang Zhang Center for Research on Intelligent Perception and Computing (CRIPAC) State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) Institute of Automation Chinese Academy of Sciences (CASIA) and University of Chinese Academy of Sciences (UCAS) Center for Research on Intelligent Perception and Computing (CRIPAC) State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) Institute of Automation Chinese Academy of Sciences (CASIA) and Centre for Artificial Intelligence and Robotics HKISI_CAS Megvii Technology Center for Research on Intelligent Perception and Computing (CRIPAC) State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) Institute of Automation Chinese Academy of Sciences (CASIA) and University of Chinese Academy of Sciences (UCAS) and Centre for Artificial Intelligence and Robotics HKISI_CAS
As it is empirically observed that Vision Transformers (ViTs) are quite insensitive to the order of input tokens, the need for an appropriate self-supervised pretext task that enhances the location awareness of ViTs i...
来源: 评论
Towards interpretable deep neural networks by leveraging adversarial examples
arXiv
收藏 引用
arXiv 2019年
作者: Dong, Yinpeng Bao, Fan Su, Hang Zhu, Jun Tsinghua National Lab for Information Science and Technology State Key Lab of Intelligent Technology and Systems Center for Bio-Inspired Computing Research Department of Computer Science and Technology Tsinghua University Beijing100084 China
Sometimes it is not enough for a DNN to produce an outcome. For example, in applications such as healthcare, users need to understand the rationale of the decisions. Therefore, it is imperative to develop algorithms t... 详细信息
来源: 评论
Max-Margin Majority Voting for Learning from Crowds  15
Max-Margin Majority Voting for Learning from Crowds
收藏 引用
Annual Conference on Neural Information Processing systems
作者: Tian Tian Jun Zhu Department of Computer Science & Technology Center for Bio-Inspired Computing Research Tsinghua National Lab for Information Science & Technology State Key Lab of Intelligent Technology & Systems Tsinghua University Beijing 100084 China
Learning-from-crowds aims to design proper aggregation strategies to infer the unknown true labels from the noisy labels provided by ordinary web workers. This paper presents max-margin majority voting (M~3V) to impro... 详细信息
来源: 评论
Modeling and analysis of information dissemination mechanism of social media
Modeling and analysis of information dissemination mechanism...
收藏 引用
2012 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI 2012
作者: Hou, Jiachen Xiong, Gang Fan, Dong Nyberg, Timo R. Dongguan Research Institute of CASIA Cloud Computing Center Chinese Academy of Sciences Songshan Lake Dongguan 523808 China State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing 100190 China Jiang Su China Sciences Intelligent Engineering Co. Ltd. Enterprise Academician Workstation 215000 China BIT Research Centre Aalto University Aalto Finland
With the fast development of Internet and data volume increase in Internet, Internet is playing more important role in information spreading in recent years. It is reported that social network is a typical complex net... 详细信息
来源: 评论
Multi-scale cyclical similarity prototype refinement for few-shot breast ultrasound image segmentation
Multi-scale cyclical similarity prototype refinement for few...
收藏 引用
International Conference on Signal Processing Proceedings (ICSP)
作者: Yingfeng Ou Xing Yang Jian Zhang Caiqing Jian Lihui Wang Engineering Research Center of Text Computing Ministry of Education Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province State Key Laboratory of Public Big Data College of Computer Science and Technology Guizhou University Guiyang China
Few-shot learning based methods can address the reliance on large-scale labeled samples in current breast tumor segmentation. However, previous methods typically rely on a few support samples to extract abstract, coar... 详细信息
来源: 评论
Text-Guided Molecule Generation with Diffusion Language Model
arXiv
收藏 引用
arXiv 2024年
作者: Gong, Haisong Liu, Qiang Wu, Shu Wang, Liang Center for Research on Intelligent Perception and Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China
Text-guided molecule generation is a task where molecules are generated to match specific textual descriptions. Recently, most existing SMILES-based molecule generation methods rely on an autoregressive architecture. ... 详细信息
来源: 评论
Optimal simulation of Deutsch gates and the Fredkin gate
收藏 引用
Physical Review A 2015年 第3期91卷 032302-032302页
作者: Nengkun Yu Mingsheng Ying Institute for Quantum Computing University of Waterloo Waterloo Ontario Canada Department of Mathematics & Statistics University of Guelph Guelph Ontario Canada Center for Quantum Computation and Intelligent Systems (QCIS) Faculty of Engineering and Information Technology University of Technology Sydney NSW 2007 Australia State Key Laboratory of Intelligent Technology and Systems Tsinghua National Laboratory for Information Science and Technology Department of Computer Science and Technology Tsinghua University Beijing 100084 China
In this paper, we study the optimal simulation of the three-qubit unitary using two-qubit gates. First, we completely characterize the two-qubit gate cost of simulating the Deutsch gate (controlled-controlled gate) by... 详细信息
来源: 评论
Interpretable Multimodal Out-of-Context Detection with Soft Logic Regularization
Interpretable Multimodal Out-of-Context Detection with Soft ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Huanhuan Ma Jinghao Zhang Qiang Liu Shu Wu Liang Wang School of Artificial Intelligence University of Chinese Academy of Sciences Center for Research on Intelligent Perception and Computing (CRIPAC) State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) Institute of Automation Chinese Academy of Sciences
The rapid spread of information through mobile devices and media has led to the widespread of false or deceptive news, causing significant concerns in society. Among different types of misinformation, image repurposin...
来源: 评论
Rethinking Graph Masked Autoencoders through Alignment and Uniformity
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Liang Tao, Xiang Liu, Qiang Wu, Shu Wang, Liang Center for Research on Intelligent Perception and Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China
Self-supervised learning on graphs can be bifurcated into contrastive and generative methods. Contrastive methods, also known as graph contrastive learning (GCL), have dominated graph self-supervised learning in the p... 详细信息
来源: 评论
Can Large Language Models Detect Rumors on Social Media?
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Qiang Tao, Xiang Wu, Junfei Wu, Shu Wang, Liang Center for Research on Intelligent Perception and Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China
In this work, we investigate to use Large Language Models (LLMs) for rumor detection on social media. However, it is challenging for LLMs to reason over the entire propagation information on social media, which contai... 详细信息
来源: 评论