咨询与建议

限定检索结果

文献类型

  • 285 篇 期刊文献
  • 202 篇 会议

馆藏范围

  • 487 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 310 篇 工学
    • 218 篇 计算机科学与技术...
    • 188 篇 软件工程
    • 51 篇 控制科学与工程
    • 50 篇 信息与通信工程
    • 40 篇 生物工程
    • 39 篇 光学工程
    • 36 篇 电气工程
    • 25 篇 生物医学工程(可授...
    • 22 篇 机械工程
    • 21 篇 交通运输工程
    • 20 篇 电子科学与技术(可...
    • 16 篇 材料科学与工程(可...
    • 13 篇 化学工程与技术
    • 11 篇 安全科学与工程
    • 10 篇 仪器科学与技术
    • 7 篇 动力工程及工程热...
    • 6 篇 土木工程
  • 167 篇 理学
    • 84 篇 数学
    • 53 篇 物理学
    • 45 篇 生物学
    • 28 篇 统计学(可授理学、...
    • 15 篇 化学
    • 14 篇 系统科学
  • 99 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 39 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 30 篇 医学
    • 26 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 11 篇 法学
    • 9 篇 社会学
  • 5 篇 经济学
  • 5 篇 农学
  • 2 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 17 篇 deep learning
  • 14 篇 reinforcement le...
  • 12 篇 semantics
  • 12 篇 feature extracti...
  • 10 篇 machine learning
  • 10 篇 training
  • 9 篇 predictive model...
  • 8 篇 image segmentati...
  • 8 篇 artificial intel...
  • 8 篇 intelligent syst...
  • 7 篇 computer science
  • 7 篇 scalability
  • 7 篇 semantic segment...
  • 7 篇 task analysis
  • 7 篇 three-dimensiona...
  • 7 篇 convolution
  • 7 篇 laboratories
  • 7 篇 trajectory
  • 7 篇 correlation
  • 6 篇 automation

机构

  • 53 篇 school of artifi...
  • 28 篇 beijing engineer...
  • 28 篇 guangdong engine...
  • 25 篇 university of ch...
  • 19 篇 state key labora...
  • 18 篇 qingdao academy ...
  • 14 篇 center for resea...
  • 14 篇 the state key la...
  • 14 篇 state key labora...
  • 13 篇 ieee
  • 10 篇 cloud computing ...
  • 10 篇 state key labora...
  • 10 篇 state key labora...
  • 9 篇 intelligent manu...
  • 9 篇 the beijing engi...
  • 9 篇 the state key la...
  • 8 篇 beijing national...
  • 8 篇 department of co...
  • 7 篇 school of comput...
  • 7 篇 state key labora...

作者

  • 57 篇 gang xiong
  • 34 篇 xiong gang
  • 29 篇 zhen shen
  • 20 篇 xisong dong
  • 19 篇 fei-yue wang
  • 18 篇 shen zhen
  • 17 篇 dong xisong
  • 14 篇 fan rui
  • 13 篇 xiuqin shang
  • 13 篇 fenghua zhu
  • 13 篇 wang lihui
  • 12 篇 hu xiaolin
  • 11 篇 sun maosong
  • 10 篇 bin hu
  • 9 篇 liu yang
  • 9 篇 wang liang
  • 9 篇 shichao chen
  • 8 篇 zhu fenghua
  • 8 篇 liu qiang
  • 8 篇 wu shu

语言

  • 443 篇 英文
  • 34 篇 其他
  • 10 篇 中文
检索条件"机构=Research Center for Intelligent Computing Systems State Key Laboratory of Computer Architecture"
487 条 记 录,以下是81-90 订阅
排序:
Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform
收藏 引用
eLight 2022年 第1期2卷 132-142页
作者: Qian Ma Wei Gao Qiang Xiao Lingsong Ding Tianyi Gao Yajun Zhou Xinxin Gao Tao Yan Che Liu Ze Gu Xianghong Kong Qammer HAbbasi Lianlin Li Cheng‑Wei Qiu Yuanqing Li Tie Jun Cui Institute of Electromagnetic Space Southeast UniversityNanjing 210096China School of Automation Science and Engineering South China University of TechnologyGuangzhou 510641China State Key Laboratory of Millimeter Wave Southeast UniversityNanjing 210096China Center of Intelligent Metamaterials Pazhou Laboratory Guangzhou 510330China Research Center for Brain-Computer Interface Pazhou LabGuangzhou 510330China Department of Electrical and Computer Engineering National University of SingaporeSingaporeSingapore University of Glasgow James Watt School of EngineeringGlasgow G128QQUK State Key Laboratory of Advanced Optical Communication Systems and Networks Department of ElectronicsPeking UniversityBeijing 100871China
Brain-computer interfaces(BCIs),invasive or non-invasive,have projected unparalleled vision and promise for assisting patients in need to better their interaction with the *** by the BCI-based rehabilitation technolog... 详细信息
来源: 评论
research on Anti-Swing Strategies for Bridge Cranes
Research on Anti-Swing Strategies for Bridge Cranes
收藏 引用
Chinese Automation Congress (CAC)
作者: Shiqi Wang Enguang Hou Haoyuan Zheng Yuyi Jiang Zhen Shen Gang Xiong The College of Rail Transit of Shandong Jiaotong University Jinan China Beijing Engineering Research Center of Intelligent Systems and Technology Institute of Automation Chinese Academy of Sciences Beijing China Intelligent Manufacturing Center Qingdao Academy of Intelligent Industries Qingdao China State Key Laboratory of Multimodal Artifcial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing China Guangdong Engineering Research Center of 3D Printing and Intelligent Manufacturing Cloud Computing Center Chinese Academy of Sciences Dongguan China
A study is conducted on the LH5T-13.5M electric crane, focusing on the swing characteristics of the load during steel coil lifting operations and the displacement issue of the crane. Initially, the system model is for... 详细信息
来源: 评论
DA-Ada: Learning Domain-Aware Adapter for Domain Adaptive Object Detection
arXiv
收藏 引用
arXiv 2024年
作者: Li, Haochen Zhang, Rui Yao, Hantao Zhang, Xin Hao, Yifan Song, Xinkai Li, Xiaqing Zhao, Yongwei Li, Ling Chen, Yunji Intelligent Software Research Center Institute of Software CAS Beijing China State Key Lab of Processors Institute of Computing Technology CAS Beijing China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation CAS Beijing China University of Chinese Academy of Sciences Beijing China
Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain. As the visual-language models (VLMs) can provide essential general knowledge o... 详细信息
来源: 评论
Boosting Stereo Image Noise Removal by Learning Uncertainty and Enriched Features
Boosting Stereo Image Noise Removal by Learning Uncertainty ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Bingcai Wei Hui Liu Chuang Qian Xinyu Ren Xintong Xu School of Computer Science Wuhan University Wuhan China GNSS Research Center Wuhan Unicersity Wuhan China Intelligent Transport Systems Research Center Wuhan University of Technology Wuhan China State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin China
Stereo image denoising is crucial to improve perceptual quality and autonomous driving perception. Existing methods often fall short in accurately estimating the uncertainty inherent in noisy data, leading to suboptim... 详细信息
来源: 评论
Vehicular Road Crack Detection with Deep Learning: A New Online Benchmark for Comprehensive Evaluation of Existing Algorithms
arXiv
收藏 引用
arXiv 2025年
作者: Ma, Nachuan Song, Zhengfei Hu, Qiang Liu, Chuang-Wei Han, Yu Zhang, Yanting Fan, Rui Xie, Lihua College of Electronics & Information Engineering Shanghai Research Institute for Intelligent Autonomous Systems the State Key Laboratory of Intelligent Autonomous Systems Frontiers Science Center for Intelligent Autonomous Systems Tongji University Shanghai201804 China School of Computer Science and Technology Donghua University Shanghai201620 China School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore639798 Singapore
In the emerging field of urban digital twins (UDTs), advancing intelligent road inspection (IRI) vehicles with automatic road crack detection systems is essential for maintaining civil infrastructure. Over the past de... 详细信息
来源: 评论
Replace2Self: Self-Supervised Denoising based on Voxel Replacing and Image Mixing for Diffusion MRI
收藏 引用
IEEE Transactions on Medical Imaging 2025年 PP卷 PP页
作者: Wu, Linhai Wang, Lihui Deng, Zeyu Zhu, Yuemin Wei, Hongjiang Guizhou University Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province Engineering Research Center of Text Computing & Cognitive Intelligence Ministry of Education State Key Laboratory of Public Big Data College of Computer Science and Technology 550025 China Univ Lyon INSA Lyon CNRS Inserm CREATIS UMR 5220 LyonF-69621 France Shanghai Jiao Tong University School of Biomedical Engineering Shanghai200030 China
Low signal to noise ratio (SNR) remains one of the limitations of diffusion weighted (DW) imaging. How to suppress the influence of noise on the subsequent analysis about the tissue microstructure is still challenging... 详细信息
来源: 评论
SkinFormer: Learning Statistical Texture Representation with Transformer for Skin Lesion Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Rongtao Wang, Changwei Zhang, Jiguang Xu, Shibiao Meng, Weiliang Zhang, Xiaopeng The State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing China The Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Qilu University of Technology Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China CASIA Beijing China The State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence Beijing University of Posts and Telecommunications China
Accurate skin lesion segmentation from dermoscopic images is of great importance for skin cancer diagnosis. However, automatic segmentation of melanoma remains a challenging task because it is difficult to incorporate... 详细信息
来源: 评论
DA-Ada: learning domain-aware adapter for domain adaptive object detection  24
DA-Ada: learning domain-aware adapter for domain adaptive ob...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing systems
作者: Haochen Li Rui Zhang Hantao Yao Xin Zhang Yifan Hao Xinkai Song Xiaqing Li Yongwei Zhao Ling Li Yunji Chen Intelligent Software Research Center Institute of Software CAS Beijing China and University of Chinese Academy of Sciences Beijing China State Key Lab of Processors Institute of Computing Technology CAS Beijing China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation CAS Beijing China State Key Lab of Processors Institute of Computing Technology CAS Beijing China and University of Chinese Academy of Sciences Beijing China
Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain. As the visual-language models (VLMs) can provide essential general knowledge o...
来源: 评论
Deep Reinforcement Learning for Dynamic Error Compensation in 3D Printing
Deep Reinforcement Learning for Dynamic Error Compensation i...
收藏 引用
IEEE International Conference on Automation Science and Engineering (CASE)
作者: Dong Wang Zhen Shen Xiangyang Dong Qihang Fang Weixing Wang Xisong Dong Gang Xiong School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing China Intelligent Manufacturing Center Qingdao Academy of Intelligent Industries Qingdao China State Key Laboratory of Multimodal Artificial Intelligence Systems Beijing Engineering Research Center of Intelligent Systems and Technology Institute of Automation Chinese Academy of Sciences Beijing China Guangdong Engineering Research Center of 3D Printing and Intelligent Manufacturing Cloud Computing Center Chinese Academy of Sciences Dongguan China
In the 3D printing process, various error factors can affect the accuracy of the final printing quality. However, current 3D printing error compensation methods have limited effects and usually cannot work in real-tim...
来源: 评论
GSLB: The Graph Structure Learning Benchmark  37
GSLB: The Graph Structure Learning Benchmark
收藏 引用
37th Conference on Neural Information Processing systems, NeurIPS 2023
作者: Li, Zhixun Wang, Liang Sun, Xin Luo, Yifan Zhu, Yanqiao Chen, Dingshuo Luo, Yingtao Zhou, Xiangxin Liu, Qiang Wu, Shu Yu, Jeffrey Xu Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Hong Kong Center for Research on Intelligent Perception and Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Department of Automation University of Science and Technology of China China School of Cyberspace Security Beijing University of Posts and Telecommunications China Department of Computer Science University of California Los Angeles United States Heinz College of Information Systems and Public Policy Machine Learning Department School of Computer Science Carnegie Mellon University United States
Graph Structure Learning (GSL) has recently garnered considerable attention due to its ability to optimize both the parameters of Graph Neural Networks (GNNs) and the computation graph structure simultaneously. Despit... 详细信息
来源: 评论