咨询与建议

限定检索结果

文献类型

  • 211 篇 期刊文献
  • 93 篇 会议
  • 3 册 图书

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 120 篇 计算机科学与技术...
    • 97 篇 软件工程
    • 42 篇 生物医学工程(可授...
    • 42 篇 生物工程
    • 32 篇 光学工程
    • 28 篇 信息与通信工程
    • 24 篇 电气工程
    • 20 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
  • 135 篇 理学
    • 60 篇 数学
    • 48 篇 生物学
    • 44 篇 物理学
    • 35 篇 统计学(可授理学、...
    • 15 篇 地球物理学
    • 12 篇 系统科学
  • 51 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 19 篇 工商管理
    • 19 篇 图书情报与档案管...
  • 42 篇 医学
    • 37 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 教育学

主题

  • 12 篇 machine learning
  • 10 篇 deep learning
  • 9 篇 image segmentati...
  • 8 篇 predictive model...
  • 7 篇 feature extracti...
  • 7 篇 accuracy
  • 6 篇 training
  • 5 篇 galaxies
  • 5 篇 neural networks
  • 5 篇 cosmology
  • 5 篇 artificial intel...
  • 5 篇 tumors
  • 4 篇 object detection
  • 4 篇 task analysis
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 decision making
  • 4 篇 diseases
  • 3 篇 learning systems
  • 3 篇 reinforcement le...

机构

  • 35 篇 center for data ...
  • 34 篇 center for machi...
  • 12 篇 beijing internat...
  • 11 篇 center for compu...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 ciela - montreal...
  • 8 篇 peking universit...
  • 8 篇 university of pe...
  • 7 篇 department of ra...
  • 7 篇 machine learning...
  • 7 篇 school of mathem...
  • 7 篇 department of ph...
  • 7 篇 peking universit...
  • 7 篇 heidelberg
  • 6 篇 lab crestview ra...
  • 6 篇 helmholtz imagin...
  • 6 篇 translatum - cen...
  • 6 篇 department of pa...
  • 6 篇 faculty of mathe...

作者

  • 11 篇 hezaveh yashar
  • 11 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 perreault-levass...
  • 10 篇 bin dong
  • 9 篇 bakas spyridon
  • 8 篇 li hongwei bran
  • 8 篇 kofler florian
  • 8 篇 ulrich constanti...
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 ezhov ivan
  • 7 篇 linguraru marius...
  • 7 篇 menze bjoern
  • 6 篇 hüllermeier eyke
  • 6 篇 wang chunhao
  • 6 篇 kazerooni anahit...
  • 6 篇 chung verena
  • 6 篇 dong bin
  • 6 篇 moawad ahmed w.

语言

  • 280 篇 英文
  • 25 篇 其他
  • 1 篇 中文
检索条件"机构=Research Center of Machine Learning and Data Analysis"
307 条 记 录,以下是111-120 订阅
排序:
Mining Negative Temporal Contexts For False Positive Suppression In Real-Time Ultrasound Lesion Detection
arXiv
收藏 引用
arXiv 2023年
作者: Yu, Haojun Li, Youcheng Wu, QuanLin Zhao, Ziwei Chen, Dengbo Wang, Dong Wang, Liwei National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University Beijing China Center of Data Science Peking University Beijing China Center for Machine Learning Research Peking University Beijing China Yizhun Medical AI Co. Ltd Beijing China Guangdong China
During ultrasonic scanning processes, real-time lesion detection can assist radiologists in accurate cancer diagnosis. However, this essential task remains challenging and underexplored. General-purpose real-time obje... 详细信息
来源: 评论
An Empirical Study of Super-Resolution on Low-Resolution Micro-Expression Recognition
收藏 引用
IEEE Transactions on Affective Computing 2025年
作者: Zhou, Ling Wang, Mingpei Huang, Xiaohua Zheng, Wenming Mao, Qirong Zhao, Guoying Macau University of Science and Technology School of Computer Science and Engineering 999078 China Nanjing Institute of Technology School of International Education Oulu School Jiangsu Nanjing211167 China Southeast University Key Laboratory of Child Development and Learning Science Ministry of Education Nanjing210096 China Southeast University Research Center for Learning Science China Southeast University School of Biological Science and Medical Engineering Jiangsu Nanjing210096 China Jiangsu University School of Computer Science and Communication Engineering Jiangsu Zhenjiang212013 China University of Oulu Center for Machine Vision and Signal Analysis 90014 Finland
Micro-expression recognition (MER) in low-resolution (LR) scenarios presents an important and complex challenge, particularly for practical applications such as group MER in crowded environments. Despite considerable ... 详细信息
来源: 评论
Portable tracker for neurophysiological research of sport shooting
Portable tracker for neurophysiological research of sport sh...
收藏 引用
Saratov Fall Meeting 2021: Computational Biophysics and Nanobiophotonics
作者: Antipov, V.M. Badarin, A.A. Grubov, V.V. Kazantsev, V.B. Hramov, A.E. Neuroscience and Cognivite Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Universitetskaya Str. 1 Innopolis 420500 Russia Laboratory of Advanced Methods for High-Dimensional Data Analysis Lobachevsky State University of Nizhni Novgorod 23 Gagarin ave. Nizhny Novgorod603950 Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University A. Nevskogo ul. 14 Kaliningrad236016 Russia Neurotechnology Deparment Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod603022 Russia
In this work we present the development process of a wireless portable module. It is developed to record various characteristics during sport shooting, such as automatic detection of the moment of shot and barrel move... 详细信息
来源: 评论
Natural Convection Optimizer: A Novel Physics-Based Metaheuristic Optimization Algorithm
SSRN
收藏 引用
SSRN 2024年
作者: Liang, Kang Yipeng, Wang Jiayi, Chen Krakhmalev, Oleg Engineering Training and Innovation Education Center Shanghai Polytechnic University Shanghai201209 China School of Foreign Languages and CulturalCommunication Shanghai Polytechnic University Shanghai201209 China School of Economics and Management Shanghai Polytechnic University Shanghai201209 China Department of Data Analysis and Machine Learning Financial University under the Government of the Rus-sian Federation 4‐th Veshnyakovsky Passage 4 Moscow109456 Russia
In this paper, Natural Convection Optimizer Algorithm (NCvO) is proposed as a novel physical-inspired metaheuristic optimization algorithm. It is a novel physics-inspired metaheuristic optimization algorithm based on ... 详细信息
来源: 评论
Pixelated Reconstruction of Foreground Density and Background Surface Brightness in Gravitational Lensing Systems using Recurrent Inference machines
arXiv
收藏 引用
arXiv 2023年
作者: Adam, Alexandre Perreault-Levasseur, Laurence Hezaveh, Yashar Welling, Max Department of Physics Université de Montréal Montréal Canada Mila - Quebec Artificial Intelligence Institute Montréal Canada Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Microsoft Research AI4Science
Modeling strong gravitational lenses in order to quantify the distortions in the images of background sources and to reconstruct the mass density in the foreground lenses has been a difficult computational challenge. ... 详细信息
来源: 评论
KnowMAN: Weakly supervised multinomial adversarial networks
arXiv
收藏 引用
arXiv 2021年
作者: März, Luisa Asgari, Ehsaneddin Braune, Fabienne Zimmermann, Franziska Roth, Benjamin Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Nlp Expert Center Data:Lab Volkswagen Ag Munich Germany
The absence of labeled data for training neural models is often addressed by leveraging knowledge about the specific task, resulting in heuristic but noisy labels. The knowledge is captured in labeling functions, whic... 详细信息
来源: 评论
: Quantum Artificial Intelligence for the Automotive Industry
收藏 引用
KI - Künstliche Intelligenz 2024年 第4期38卷 351-359页
作者: Stollenwerk, Tobias Bhattacharya, Somtapa Cattelan, Michele Ciani, Alessandro Compostella, Gabriele Headley, David Klepsch, Johannes Klusch, Matthias Leder, Markus Macaluso, Antonio Michielsen, Kristel Nabok, Dmytro Papanikolaou, Anestis Rausch, Alexander Schumann, Marco Skolik, Andrea Yarkoni, Sheir Wilhelm, Frank K. Institute for Quantum Computing Analytics (PGI-12) Forschungszentrum Jülich Jülich Germany Volkswagen Data:Lab Volkswagen Group Munich Germany Machine Learning Research Lab Volkswagen Group Munich Germany Mercedes-Benz AG Stuttgart Germany BMW AG München Germany German Research Center for Artificial Intelligence (DFKI) Saarbrüecken Germany Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich Jülich Germany Robert Bosch GmbH Corporate Research Renningen Germany
来源: 评论
S$^\text{3}$Attention: Improving Long Sequence Attention With Smoothed Skeleton Sketching
收藏 引用
IEEE Journal of Selected Topics in Signal Processing 2024年 第6期18卷 985-996页
作者: Xue Wang Tian Zhou Jianqing Zhu Jialin Liu Kun Yuan Tao Yao Wotao Yin Rong Jin HanQin Cai Alibaba Group Bellevue WA USA Computer Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology Thuwal Saudi Arabia Department of Statistics and Data Science University of Central Florida Orlando FL USA Center for Machine Learning Research Peking University Beijing China Antai College of Economics and Management Shanghai Jiao Tong University Shanghai China Meta Menlo Park CA USA Department of Statistics and Data Science and the Department of Computer Science University of Central Florida Orlando FL USA
Attention based models have achieved many remarkable breakthroughs in numerous applications. However, the quadratic complexity of Attention makes the vanilla Attention based models hard to apply to long sequence tasks... 详细信息
来源: 评论
Beyond Gaussian Noise: A Generalized Approach to Likelihood analysis with non-Gaussian Noise
arXiv
收藏 引用
arXiv 2023年
作者: Legin, Ronan Adam, Alexandre Hezaveh, Yashar Levasseur, Laurence Perreault Department of Physics Université de Montréal Montréal Canada Ciela Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Mila Quebec Artificial Intelligence Institute Montréal Canada Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States
Likelihood analysis is typically limited to normally distributed noise due to the difficulty of determining the probability density function of complex, high-dimensional, non-Gaussian, and anisotropic noise. This is a... 详细信息
来源: 评论
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Aids
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Ai...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Iosif Tsangko Andreas Triantafyllopoulos Michael Müller Hendrik Schröter Björn W. Schuller EIHW – Chair of Embedded Intelligence for Health Care and Wellbeing University of Augsburg Germany CHI – Chair of Health Informatics Technical University of Munich Germany MCML – Munich Center for Machine Learning Munich Germany WS Audiology Research and Development Erlangen Germany GLAM – Group on Language Audio & Music Imperial College London UK MDSI – Munich Data Science Institute Munich Germany
The DeepFilterNet (DFN) architecture was recently proposed as a deep learning model suited for hearing aid devices. Despite its competitive performance on numerous benchmarks, it still follows a ‘one-size-fits-all’ ... 详细信息
来源: 评论