咨询与建议

限定检索结果

文献类型

  • 211 篇 期刊文献
  • 87 篇 会议
  • 3 册 图书

馆藏范围

  • 301 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 119 篇 计算机科学与技术...
    • 96 篇 软件工程
    • 42 篇 生物医学工程(可授...
    • 42 篇 生物工程
    • 32 篇 光学工程
    • 28 篇 信息与通信工程
    • 24 篇 电气工程
    • 20 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
  • 136 篇 理学
    • 59 篇 数学
    • 48 篇 生物学
    • 44 篇 物理学
    • 34 篇 统计学(可授理学、...
    • 17 篇 地球物理学
    • 12 篇 系统科学
  • 51 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 19 篇 工商管理
    • 19 篇 图书情报与档案管...
  • 43 篇 医学
    • 38 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 教育学

主题

  • 12 篇 machine learning
  • 11 篇 deep learning
  • 9 篇 image segmentati...
  • 8 篇 predictive model...
  • 7 篇 feature extracti...
  • 7 篇 accuracy
  • 6 篇 training
  • 5 篇 galaxies
  • 5 篇 neural networks
  • 5 篇 cosmology
  • 5 篇 artificial intel...
  • 5 篇 tumors
  • 4 篇 object detection
  • 4 篇 task analysis
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 benchmarking
  • 4 篇 diseases
  • 3 篇 learning systems
  • 3 篇 reinforcement le...

机构

  • 35 篇 center for data ...
  • 34 篇 center for machi...
  • 12 篇 beijing internat...
  • 11 篇 center for compu...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 ciela - montreal...
  • 8 篇 peking universit...
  • 8 篇 university of pe...
  • 7 篇 department of ra...
  • 7 篇 machine learning...
  • 7 篇 department of ph...
  • 7 篇 peking universit...
  • 7 篇 heidelberg
  • 6 篇 lab crestview ra...
  • 6 篇 helmholtz imagin...
  • 6 篇 translatum - cen...
  • 6 篇 school of mathem...
  • 6 篇 department of pa...
  • 6 篇 faculty of mathe...

作者

  • 11 篇 hezaveh yashar
  • 11 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 perreault-levass...
  • 10 篇 bin dong
  • 9 篇 bakas spyridon
  • 8 篇 li hongwei bran
  • 8 篇 kofler florian
  • 8 篇 ulrich constanti...
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 ezhov ivan
  • 7 篇 linguraru marius...
  • 7 篇 menze bjoern
  • 6 篇 hüllermeier eyke
  • 6 篇 wang chunhao
  • 6 篇 kazerooni anahit...
  • 6 篇 chung verena
  • 6 篇 dong bin
  • 6 篇 moawad ahmed w.

语言

  • 274 篇 英文
  • 25 篇 其他
  • 1 篇 中文
检索条件"机构=Research Center of Machine Learning and Data Analysis"
301 条 记 录,以下是111-120 订阅
排序:
An Improved Finite-time analysis of Temporal Difference learning with Deep Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Ke, Zhifa Wen, Zaiwen Zhang, Junyu Center for Data Science Peking University China Beijing International Center for Mathematical Research Center for Machine Learning Research Changsha Institute for Computing and Digital Economy Beijing China Department of Industrial Systems Engineering and Management National University of Singapore Singapore
Temporal difference (TD) learning algorithms with neural network function parameterization have well-established empirical success in many practical large-scale reinforcement learning tasks. However, theoretical under... 详细信息
来源: 评论
System Architecture for Reading and Interpreting Physical Printouts of Medical Forms
System Architecture for Reading and Interpreting Physical Pr...
收藏 引用
Annual Siberian Russian Workshop on Electron Devices and Materials (EDM)
作者: Ekaterina Snegireva Grigory R. Khazankin Igor Mikheenko Stream Data Analytics and Machine Learning laboratory Novosibirsk State University Novosibirsk Russia Novosibirsk State University Novosibirsk Russia Meshalkin National Medical Research Center Novosibirsk Russia
This article describes the developed architecture of the system module for processing and interpreting analog medical data. Patients often undergo examinations in various medical institutions, and since their results ... 详细信息
来源: 评论
HERALD: A NATURAL LANGUAGE ANNOTATED LEAN 4 dataSET
arXiv
收藏 引用
arXiv 2024年
作者: Gao, Guoxiong Wang, Yutong Jiang, Jiedong Gao, Qi Qin, Zihan Xu, Tianyi Dong, Bin Peking University China National University of Singapore Singapore Center for Data Science Peking University China Beijing International Center for Mathematical Research The New Cornerstone Science Laboratory Peking University China Center for Machine Learning Research Peking University China
Verifiable formal languages like Lean have profoundly impacted mathematical reasoning, particularly through the use of large language models (LLMs) for automated reasoning. A significant challenge in training LLMs for... 详细信息
来源: 评论
Gradient descent finds global minima of deep neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Du, Simon S. Lee, Jason D. Li, Haochuan Wang, Liwei Zhai, Xiyu Machine Learning Department Carnegie Mellon University Data Science and Operations Department University of Southern California School of Physics Peking University Center for Data Science Peking University Beijing Institute of Big Data Research Key Laboratory of Machine Perception Moe School of Eecs Peking University Department of Eecs Massachusetts Institute of Technology
Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a ... 详细信息
来源: 评论
HmBERT: Historical Multilingual Language Models for Named Entity Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Schweter, Stefan März, Luisa Schmid, Katharina Çano, Erion Bayerische Staatsbibliothek München Digital Library/ Munich Digitization Center Munich Germany Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Natural Language Processing Expert Center Data:Lab Volkswagen AG Munich Germany
Compared to standard Named Entity Recognition (NER), identifying persons, locations, and organizations in historical texts constitutes a big challenge. To obtain machine-readable corpora, the historical text is usuall... 详细信息
来源: 评论
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
RecycleNet: Latent Feature Recycling Leads to Iterative Deci...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Gregor Koehler Tassilo Wald Constantin Ulrich David Zimmerer Paul F. Jaeger Jörg K. H. Franke Simon Kohl Fabian Isensee Klaus H. Maier-Hein Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Information and Data Science School for Health Karlsruhe/Heidelberg Germany Helmholtz Imaging DKFZ National Center for Tumor Diseases (NCT) NCT Heidelberg a Partnership Between DKFZ University Medical Center Heidelberg Interactive Machine Learning Group DKFZ Machine Learning Lab University of Freiburg Freiburg Germany Latent Labs (***) London UK Applied Computer Vision Lab DKFZ Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu...
来源: 评论
On the Effectiveness of Heterogeneous Ensemble Methods for Re-Identification
On the Effectiveness of Heterogeneous Ensemble Methods for R...
收藏 引用
International Conference on machine learning and Applications (ICMLA)
作者: Simon Klüttermann Jérôme Rutinowski Frederik Polachowski Anh Nguyen Britta Grimme Moritz Roidl Emmanuel Müller TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany Paderborn University Paderborn Germany Research Center Trustworthy Data Science and Security Dortmund Germany
In this contribution, we introduce a novel ensemble method for the re-identification of industrial entities, using images of chipwood pallets and galvanized metal plates as dataset examples. Our algorithms replace com... 详细信息
来源: 评论
The Implicit Regularization of Dynamical Stability in Stochastic Gradient Descent
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Lei Su, Weijie J. School of Mathematical Sciences Peking University Beijing China Center for Machine Learning Research Peking University Beijing China Wharton Statistics and Data Science Department University of Pennsylvania Philadelphia United States
In this paper, we study the implicit regularization of stochastic gradient descent (SGD) through the lens of dynamical stability (Wu et al., 2018). We start by revising existing stability analyses of SGD, showing how ... 详细信息
来源: 评论
Advances in Self-Organizing Maps, learning Vector Quantization, Clustering and data Visualization  1
收藏 引用
丛书名: Advances in Intelligent Systems and Computing
1000年
作者: Alfredo Vellido Karina Gibert Cecilio Angulo José David Martín Guerrero
来源: 评论
People flow prediction technology for crowd navigation
收藏 引用
NTT Technical Review 2018年 第8期16卷 47-52页
作者: Sato, Daisuke Shiohara, Hisako Miyamoto, Masaru Ueda, Naonori Proactive Navigation Project NTT Service Evolution Laboratories Japan Service Innovation Laboratory NTT Service Evolution Laboratories Japan Ueda Research Laboratory Japan Machine Learning and Data Science Center NTT Communication Science Laboratories Japan
We are investigating the use of incomplete observation data in order to predict the large-scale flow of people for major events such as the Olympic Games and to derive guidance measures in advance to prevent the occur... 详细信息
来源: 评论