咨询与建议

限定检索结果

文献类型

  • 211 篇 期刊文献
  • 87 篇 会议
  • 3 册 图书

馆藏范围

  • 301 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 119 篇 计算机科学与技术...
    • 96 篇 软件工程
    • 42 篇 生物医学工程(可授...
    • 42 篇 生物工程
    • 32 篇 光学工程
    • 28 篇 信息与通信工程
    • 24 篇 电气工程
    • 20 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
  • 136 篇 理学
    • 59 篇 数学
    • 48 篇 生物学
    • 44 篇 物理学
    • 34 篇 统计学(可授理学、...
    • 17 篇 地球物理学
    • 12 篇 系统科学
  • 51 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 19 篇 工商管理
    • 19 篇 图书情报与档案管...
  • 43 篇 医学
    • 38 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 教育学

主题

  • 12 篇 machine learning
  • 11 篇 deep learning
  • 9 篇 image segmentati...
  • 8 篇 predictive model...
  • 7 篇 feature extracti...
  • 7 篇 accuracy
  • 6 篇 training
  • 5 篇 galaxies
  • 5 篇 neural networks
  • 5 篇 cosmology
  • 5 篇 artificial intel...
  • 5 篇 tumors
  • 4 篇 object detection
  • 4 篇 task analysis
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 benchmarking
  • 4 篇 diseases
  • 3 篇 learning systems
  • 3 篇 reinforcement le...

机构

  • 35 篇 center for data ...
  • 34 篇 center for machi...
  • 12 篇 beijing internat...
  • 11 篇 center for compu...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 ciela - montreal...
  • 8 篇 peking universit...
  • 8 篇 university of pe...
  • 7 篇 department of ra...
  • 7 篇 machine learning...
  • 7 篇 department of ph...
  • 7 篇 peking universit...
  • 7 篇 heidelberg
  • 6 篇 lab crestview ra...
  • 6 篇 helmholtz imagin...
  • 6 篇 translatum - cen...
  • 6 篇 school of mathem...
  • 6 篇 department of pa...
  • 6 篇 faculty of mathe...

作者

  • 11 篇 hezaveh yashar
  • 11 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 perreault-levass...
  • 10 篇 bin dong
  • 9 篇 bakas spyridon
  • 8 篇 li hongwei bran
  • 8 篇 kofler florian
  • 8 篇 ulrich constanti...
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 ezhov ivan
  • 7 篇 linguraru marius...
  • 7 篇 menze bjoern
  • 6 篇 hüllermeier eyke
  • 6 篇 wang chunhao
  • 6 篇 kazerooni anahit...
  • 6 篇 chung verena
  • 6 篇 dong bin
  • 6 篇 moawad ahmed w.

语言

  • 274 篇 英文
  • 25 篇 其他
  • 1 篇 中文
检索条件"机构=Research Center of Machine Learning and Data Analysis"
301 条 记 录,以下是121-130 订阅
排序:
PAM: A Propagation-Based Model for Segmenting Any 3D Objects across Multi-Modal Medical Images
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zifan Nan, Xinyu Li, Jiazheng Zhao, Jie Li, Haifeng Lin, Ziling Li, Haoshen Chen, Heyun Liu, Yiting Tang, Lei Zhang, Li Dong, Bin Center for Data Science Peking University Beijing China Department of Radiology Key Laboratory of Carcinogenesis and Translational Research Ministry of Education Peking University Cancer Hospital and Institute Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China Peking University Beijing China Center for Machine Learning Research Peking University Beijing China National Biomedical Imaging Center Peking University Beijing China
Background: Volumetric segmentation is crucial for medical imaging applications but faces significant challenges. Current approaches often require extensive manual annotations and scenario-specific model training, lim... 详细信息
来源: 评论
xMIL: Insightful Explanations for Multiple Instance learning in Histopathology  38
xMIL: Insightful Explanations for Multiple Instance Learning...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Hense, Julius Idaji, Mina Jamshidi Eberle, Oliver Schnake, Thomas Dippel, Jonas Ciernik, Laure Buchstab, Oliver Mock, Andreas Klauschen, Frederick Müller, Klaus-Robert Berlin Institute for the Foundations of Learning and Data Berlin Germany Machine Learning Group Technische Universität Berlin Berlin Germany Aignostics GmbH Berlin Germany Institute of Pathology Ludwig Maximilian University Munich Germany German Cancer Research Center Heidelberg Germany German Cancer Consortium Munich Germany Institute of Pathology Charité Universitätsmedizin Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max-Planck Institute for Informatics Saarbrücken Germany
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker...
来源: 评论
Improving Generalization and Convergence by Enhancing Implicit Regularization
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Mingze Wang, Jinbo He, Haotian Wang, Zilin Huang, Guanhua Xiong, Feiyu Li, Zhiyu Weinan, E. Wu, Lei School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China China AI for Science Institute China School of Data Science University of Science and Technology of China China ByteDance Research China
In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decou... 详细信息
来源: 评论
UNSUPERVISED CROSS-CORPUS SPEECH EMOTION RECOGNITION USING DOMAIN-ADAPTIVE SUBSPACE learning
UNSUPERVISED CROSS-CORPUS SPEECH EMOTION RECOGNITION USING D...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Na Liu Yuan Zong Baofeng Zhang Li Liu Jie Chen Guoying Zhao Junchao Zhu School of Computer Science and Engineering Tianjin University of Technology China Research Center for Learning Science Southeast University China School of Electrical and Electronic Engineering Tianjin University of Technology China Center for Machine Vision and Signal Analysis University of Oulu Finland
In this paper, we investigate an interesting problem, i.e., unsupervised cross-corpus speech emotion recognition (SER), in which the training and testing speech signals come from two different speech emotion corpora. ... 详细信息
来源: 评论
Portable tracker for neurophysiological research of sport shooting
Portable tracker for neurophysiological research of sport sh...
收藏 引用
Saratov Fall Meeting 2021: Computational Biophysics and Nanobiophotonics
作者: Antipov, V.M. Badarin, A.A. Grubov, V.V. Kazantsev, V.B. Hramov, A.E. Neuroscience and Cognivite Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Universitetskaya Str. 1 Innopolis 420500 Russia Laboratory of Advanced Methods for High-Dimensional Data Analysis Lobachevsky State University of Nizhni Novgorod 23 Gagarin ave. Nizhny Novgorod603950 Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University A. Nevskogo ul. 14 Kaliningrad236016 Russia Neurotechnology Deparment Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod603022 Russia
In this work we present the development process of a wireless portable module. It is developed to record various characteristics during sport shooting, such as automatic detection of the moment of shot and barrel move... 详细信息
来源: 评论
Super Wide Regression Network for Unsupervised Cross-database Facial Expression Recognition
Super Wide Regression Network for Unsupervised Cross-Databas...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Na Liu Baofeng Zhang Yuan Zong Li Liu Jie Chen Guoying Zhao Lunchao Zhu School of Computer Science and Engineering Tianjin University of Technology China School of Electrical and Electronic Engineering Tianjin University of Technology China Research Center for Learning Science Southeast University China Center for Machine Vision and Signal Analysis University of Oulu Finland
Unsupervised cross-database facial expression recognition (FER) is a challenging problem, in which the training and testing samples belong to different facial expression databases. For this reason, the training (sourc... 详细信息
来源: 评论
data centric domain adaptation for historical text with OCR errors
arXiv
收藏 引用
arXiv 2021年
作者: März, Luisa Schweter, Stefan Poerner, Nina Roth, Benjamin Schütze, Hinrich Center for Information and Language Processing Ludwig Maximilian University Munich Germany Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Bayerische Staatsbibliothek München Digital Library/Munich Digitization Center Munich Germany NLP Expert Center Data:Lab Volkswagen AG Munich Germany
We propose new methods for in-domain and cross-domain Named Entity Recognition (NER) on historical data for Dutch and French. For the cross-domain case, we address domain shift by integrating unsupervised in-domain da... 详细信息
来源: 评论
learning trivializing gradient flows for lattice gauge theories
收藏 引用
Physical Review D 2023年 第5期107卷 L051504-L051504页
作者: Simone Bacchio Pan Kessel Stefan Schaefer Lorenz Vaitl Computation-based Science and Technology Research Center The Cyprus Institute Nicosia Cyprus Machine Learning Group Technische Universität Berlin Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany John von Neumann-Institut für Computing NIC Deutsches Elektronen-Synchrotron DESY Germany
We propose a unifying approach that starts from the perturbative construction of trivializing maps by Lüscher and then improves on it by learning. The resulting continuous normalizing flow model can be implemente... 详细信息
来源: 评论
Modeling the dielectric constant of silicon-based nanocomposites using machine learning
Modeling the dielectric constant of silicon-based nanocompos...
收藏 引用
2020 International Conference on Actual Problems of Electron Devices Engineering, APEDE 2020
作者: Korchagin, Sergey Alekseevich Klinaev, Yuri Vasilievich Terin, Denis Vladimirovich Romanchuk, Sergey Petrovich Financial University Government of the Russian Federation Department of Data Analysis and Machine Learning Moscow Russia Yuri Gagarin Saratov State Technical University Department of Natural and Mathematical Sciences Engels Russia Technol. and Qual. Mgmt. Saratov National Research State University Named after N. G. Chernyshevsky Department of Materials Science Saratov Russia Yuri Gagarin Saratov State Technical University Department of Information Security of Automated Systems Saratov Russia
In this work, we solve the problem of predicting the dielectric constant of silicon-based nanocomposites using machine learning methods. Mathematical models and programs have been developed to predict the electrophysi... 详细信息
来源: 评论
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
arXiv
收藏 引用
arXiv 2023年
作者: Koehler, Gregor Wald, Tassilo Ulrich, Constantin Zimmerer, David Jaeger, Paul F. Franke, Jörg K.H. Kohl, Simon Isensee, Fabian Maier-Hein, Klaus H. Heidelberg Division of Medical Image Computing Germany Helmholtz Information and Data Science School for Health Karlsruhe Heidelberg Germany Helmholtz Imaging DKFZ Germany NCT Heidelberg a partnership between DKFZ University Medical Center Heidelberg Germany Interactive Machine Learning Group DKFZ Applied Computer Vision Lab DKFZ Machine Learning Lab University of Freiburg Freiburg Germany London United Kingdom Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu... 详细信息
来源: 评论