咨询与建议

限定检索结果

文献类型

  • 208 篇 期刊文献
  • 87 篇 会议
  • 3 册 图书

馆藏范围

  • 298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 194 篇 工学
    • 119 篇 计算机科学与技术...
    • 97 篇 软件工程
    • 42 篇 生物医学工程(可授...
    • 42 篇 生物工程
    • 32 篇 光学工程
    • 28 篇 信息与通信工程
    • 24 篇 电气工程
    • 20 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
  • 135 篇 理学
    • 60 篇 数学
    • 48 篇 生物学
    • 44 篇 物理学
    • 35 篇 统计学(可授理学、...
    • 15 篇 地球物理学
    • 12 篇 系统科学
  • 51 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 19 篇 工商管理
    • 19 篇 图书情报与档案管...
  • 42 篇 医学
    • 37 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 教育学

主题

  • 11 篇 machine learning
  • 10 篇 deep learning
  • 9 篇 image segmentati...
  • 8 篇 predictive model...
  • 7 篇 feature extracti...
  • 7 篇 accuracy
  • 6 篇 training
  • 5 篇 galaxies
  • 5 篇 neural networks
  • 5 篇 cosmology
  • 5 篇 artificial intel...
  • 5 篇 tumors
  • 4 篇 object detection
  • 4 篇 task analysis
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 diseases
  • 3 篇 learning systems
  • 3 篇 reinforcement le...
  • 3 篇 semantic segment...

机构

  • 35 篇 center for data ...
  • 34 篇 center for machi...
  • 12 篇 beijing internat...
  • 11 篇 center for compu...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 ciela - montreal...
  • 8 篇 peking universit...
  • 8 篇 university of pe...
  • 7 篇 department of ra...
  • 7 篇 machine learning...
  • 7 篇 department of ph...
  • 7 篇 peking universit...
  • 7 篇 heidelberg
  • 6 篇 lab crestview ra...
  • 6 篇 helmholtz imagin...
  • 6 篇 translatum - cen...
  • 6 篇 school of mathem...
  • 6 篇 department of pa...
  • 6 篇 faculty of mathe...

作者

  • 11 篇 hezaveh yashar
  • 11 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 perreault-levass...
  • 10 篇 bin dong
  • 9 篇 bakas spyridon
  • 8 篇 li hongwei bran
  • 8 篇 kofler florian
  • 8 篇 ulrich constanti...
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 ezhov ivan
  • 7 篇 linguraru marius...
  • 7 篇 menze bjoern
  • 6 篇 hüllermeier eyke
  • 6 篇 wang chunhao
  • 6 篇 kazerooni anahit...
  • 6 篇 chung verena
  • 6 篇 dong bin
  • 6 篇 moawad ahmed w.

语言

  • 271 篇 英文
  • 25 篇 其他
  • 1 篇 中文
检索条件"机构=Research Center of Machine Learning and Data Analysis"
298 条 记 录,以下是121-130 订阅
排序:
Your Transformer May Not be as Powerful as You Expect
arXiv
收藏 引用
arXiv 2022年
作者: Luo, Shengjie Li, Shanda Zheng, Shuxin Liu, Tie-Yan Wang, Liwei He, Di Key Laboratory of Machine Perception MOE School of Intelligence Science and Technology Peking University China Machine Learning Department School of Computer Science Carnegie Mellon University United States Microsoft Research United States Center for Data Science Peking University China Zhejiang Lab China
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding... 详细信息
来源: 评论
RBGNet: Ray-based Grouping for 3D Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Haiyang Shi, Shaoshuai Yang, Ze Fang, Rongyao Qian, Qi Li, Hongsheng Schiele, Bernt Wang, Liwei Center for Data Science Peking University China Max Planck Institute for Informatics Germany University of Toronto Canada The Chinese University of Hong Kong Hong Kong Alibaba Group China Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University China International Center for Machine Learning Research Peking University China
As a fundamental problem in computer vision, 3D object detection is experiencing rapid growth. To extract the point-wise features from the irregularly and sparsely distributed points, previous methods usually take a f... 详细信息
来源: 评论
Robustness in Fatigue Strength Estimation
arXiv
收藏 引用
arXiv 2022年
作者: Weichert, Dorina Kister, Alexander Houben, Sebastian Ernis, Gunar Wrobel, Stefan Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS Germany German Federal Institute for Materials Research and Testing Section S.3 eScience Germany University of Applied Sciences Bonn-Rhein-Sieg Germany Fraunhofer Center for Machine Learning Germany
Fatigue strength estimation is a costly manual material characterization process in which state-of-the-art approaches follow a standardized experiment and analysis procedure. In this paper, we examine a modular, Machi... 详细信息
来源: 评论
Active learning meets fractal decision boundaries: a cautionary tale from the Sitnikov three-body problem
arXiv
收藏 引用
arXiv 2023年
作者: Payot, Nicolas Pasquato, Mario Trani, Alessandro Alberto Hezaveh, Yashar Perreault-Levasseur, Laurence Département de Physique Université de Montréal Mila Quebec Artificial Intelligence Institute Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning Canada Dipartimento di Fisica e Astronomia Università di Padova Vicolo dell’Osservatorio 5 PadovaI-35122 Italy Niels Bohr Institute Copenhagen Denmark Research Center for the Early Universe School of Science The University of Tokyo Tokyo Japan Okinawa Institute of Science and Technology Okinawa Japan
Chaotic systems such as the gravitational N-body problem are ubiquitous in astronomy. machine learning (ML) is increasingly deployed to predict the evolution of such systems, e.g. with the goal of speeding up simulati... 详细信息
来源: 评论
Topology-Preserving Automatic Labeling of Coronary Arteries via Anatomy-aware Connection Classifier
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Zhixing Zhao, Ziwei Wang, Dong Zhao, Shishuang Liu, Yuhang Liu, Jia Wang, Liwei Center for Data Science Peking University Beijing China National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University Beijing China Yizhun Medical AI Co. Ltd Beijing China Peking University First Hospital Beijing China Center for Machine Learning Research Peking University Beijing China Pazhou Lab Guangzhou China
Automatic labeling of coronary arteries is an essential task in the practical diagnosis process of cardiovascular diseases. For experienced radiologists, the anatomically predetermined connections are important for la... 详细信息
来源: 评论
xMIL: Insightful Explanations for Multiple Instance learning in Histopathology
arXiv
收藏 引用
arXiv 2024年
作者: Hense, Julius Idaji, Mina Jamshidi Eberle, Oliver Schnake, Thomas Dippel, Jonas Ciernik, Laure Buchstab, Oliver Mock, Andreas Klauschen, Frederick Müller, Klaus-Robert Berlin Institute for the Foundations of Learning and Data Berlin Germany Machine Learning Group Technische Universität Berlin Berlin Germany Aignostics GmbH Berlin Germany Institute of Pathology Ludwig Maximilian University Munich Germany German Cancer Research Center Heidelberg Germany German Cancer Consortium Munich Germany Institute of Pathology Charité Universitätsmedizin Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max-Planck Institute for Informatics Saarbrücken Germany
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker... 详细信息
来源: 评论
Preface
Cognitive Technologies
收藏 引用
Cognitive Technologies 2025年 Part F287卷 v-vi页
作者: Schulz, Daniel Bauckhage, Christian Research Center Machine Learning Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS Sankt Nordrhein-Westfalen Augustin Germany Fraunhofer Institute for Intelligent Analysis and Information Systems Sankt Nordrhein-Westfalen Augustin Germany
来源: 评论
Caustics: A Python Package for Accelerated Strong Gravitational Lensing Simulations
arXiv
收藏 引用
arXiv 2024年
作者: Stone, Connor Adam, Alexandre Coogan, Adam Yantovski-Barth, M.J. Filipp, Andreas Setiawan, Landung Core, Cordero Legin, Ronan Wilson, Charles Barco, Gabriel Missael Hezaveh, Yashar Perreault-Levasseur, Laurence Ciela Institute Montréal Institute for Astrophysical Data Analysis and Machine Learning MontréalQC Canada Department of Physics Université de Montréal MontréalQC Canada Mila Québec Artificial Intelligence Institute MontréalQC Canada Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States eScience Institute Scientific Software Engineering Center 1410 NE Campus Pkwy SeattleWA98195 United States
Gravitational lensing is the deflection of light rays due to the gravity of intervening masses. This phenomenon is observed in a variety of scales and configurations, involving any non-uniform mass such as planets, st... 详细信息
来源: 评论
Achieving Linear Speedup with Network-Independent learning Rates in Decentralized Stochastic Optimization
Achieving Linear Speedup with Network-Independent Learning R...
收藏 引用
IEEE Conference on Decision and Control
作者: Hao Yuan Sulaiman A. Alghunaim Kun Yuan Center for Machine Learning Research Peking University Beijing P. R. China Dept. Electrical Engr. Kuwait University Safat Kuwait AI for Science Institute Beijing P. R. China National Engineering Labratory for Big Data Analytics and Applications Beijing P. R. China
Decentralized stochastic optimization has become a crucial tool for addressing large-scale machine learning and control problems. In decentralized algorithms, all computing nodes are connected through a network topolo...
来源: 评论
learning an Effective Evolution Equation for Particle-Mesh Simulations Across Cosmologies
arXiv
收藏 引用
arXiv 2023年
作者: Payot, Nicolas Lemos, Pablo Perreault-Levasseur, Laurence Cuesta-Lazaro, Carolina Modi, Chirag Hezaveh, Yashar Département de Physique Université de Montréal Mila Quebec Artificial Intelligence Institute Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning Canada Center for Computational Astrophysics Flatiron Institute NY United States The NSF AI Institute for Artificial Intelligence and Fundamental Interactions Massachusetts Institute of Technology CambridgeMA United States Center for Astrophysics Harvard & Smithsonian CambridgeMA United States Center for Computational Mathematics Flatiron Institute NY United States
Particle-mesh simulations trade small-scale accuracy for speed compared to traditional, computationally expensive N-body codes in cosmological simulations. In this work, we show how a data-driven model could be used t... 详细信息
来源: 评论