咨询与建议

限定检索结果

文献类型

  • 211 篇 期刊文献
  • 87 篇 会议
  • 3 册 图书

馆藏范围

  • 301 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 119 篇 计算机科学与技术...
    • 96 篇 软件工程
    • 42 篇 生物医学工程(可授...
    • 42 篇 生物工程
    • 32 篇 光学工程
    • 28 篇 信息与通信工程
    • 24 篇 电气工程
    • 20 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
  • 136 篇 理学
    • 59 篇 数学
    • 48 篇 生物学
    • 44 篇 物理学
    • 34 篇 统计学(可授理学、...
    • 17 篇 地球物理学
    • 12 篇 系统科学
  • 51 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 19 篇 工商管理
    • 19 篇 图书情报与档案管...
  • 43 篇 医学
    • 38 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 教育学

主题

  • 12 篇 machine learning
  • 11 篇 deep learning
  • 9 篇 image segmentati...
  • 8 篇 predictive model...
  • 7 篇 feature extracti...
  • 7 篇 accuracy
  • 6 篇 training
  • 5 篇 galaxies
  • 5 篇 neural networks
  • 5 篇 cosmology
  • 5 篇 artificial intel...
  • 5 篇 tumors
  • 4 篇 object detection
  • 4 篇 task analysis
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 benchmarking
  • 4 篇 diseases
  • 3 篇 learning systems
  • 3 篇 reinforcement le...

机构

  • 35 篇 center for data ...
  • 34 篇 center for machi...
  • 12 篇 beijing internat...
  • 11 篇 center for compu...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 ciela - montreal...
  • 8 篇 peking universit...
  • 8 篇 university of pe...
  • 7 篇 department of ra...
  • 7 篇 machine learning...
  • 7 篇 department of ph...
  • 7 篇 peking universit...
  • 7 篇 heidelberg
  • 6 篇 lab crestview ra...
  • 6 篇 helmholtz imagin...
  • 6 篇 translatum - cen...
  • 6 篇 school of mathem...
  • 6 篇 department of pa...
  • 6 篇 faculty of mathe...

作者

  • 11 篇 hezaveh yashar
  • 11 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 perreault-levass...
  • 10 篇 bin dong
  • 9 篇 bakas spyridon
  • 8 篇 li hongwei bran
  • 8 篇 kofler florian
  • 8 篇 ulrich constanti...
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 ezhov ivan
  • 7 篇 linguraru marius...
  • 7 篇 menze bjoern
  • 6 篇 hüllermeier eyke
  • 6 篇 wang chunhao
  • 6 篇 kazerooni anahit...
  • 6 篇 chung verena
  • 6 篇 dong bin
  • 6 篇 moawad ahmed w.

语言

  • 274 篇 英文
  • 25 篇 其他
  • 1 篇 中文
检索条件"机构=Research Center of Machine Learning and Data Analysis"
301 条 记 录,以下是161-170 订阅
排序:
A Bidirectional LSTM Model for Classifying Chatbot Messages
A Bidirectional LSTM Model for Classifying Chatbot Messages
收藏 引用
International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)
作者: Nunthawat Lhasiw Nuttapong Sanglerdsinlapachai Tanatorn Tanantong Faculty of Science and Technology Thammasat University Pathum Thani Thailand Strategic Analytics Networks With Machine Learning and AI Research Team National Electronics and Computer Technology Center Pathum Thani Thailand Thammasat Research Unit in Data Innovation and Artificial Intelligence Faculty of Science and Technology Thammasat University Pathum Thani Thailand
Online channels, e.g., Facebook Messenger and Line, are widely used especially in COVID-19 pandemic. To quickly respond to their customer, chatbot system are implemented in many companies or organizations, connected t... 详细信息
来源: 评论
Excel in mathematics: Applications of calculus
Excel in mathematics: Applications of calculus
收藏 引用
2010 ASEE Annual Conference and Exposition
作者: Young, Cynthia Georgiopoulos, Michael Crouse, Tace Geiger, Cherie Islas, Alvaro Hagen, Scott Dagley-Falls, Melissa Ramsey, Patricia Lancey, Patrice Department of Mathematics College of Sciences UCF United States School of Electrical Engineering and Computer Science UCF United States Machine Learning Laboratory UCF United States Faculty Center for Teaching and Learning University of Central Florida United States Department of Chemistry College of Sciences UCF United States Civil Environmental and Construction Department UCF United States Coastal Hydroscience Analysis Modeling and Predictive Simulations Laboratory UCF United States Academic Affairs College of Engineering and Computer Science UCF United States Institutional Research University of Central Florida United States Department of Operational Excellence and Assessment Support University of Central Florida United States
Nationally only 40% of the incoming freshmen STEM majors are successful in earning a STEM degree [1]. The University of Central Florida (UCF) EXCEL program is an NSF funded STEP (Science, Technology, Engineering and M... 详细信息
来源: 评论
Marine Predators Algorithm for Energy Scheduling Problem Using Renewable Energy
Marine Predators Algorithm for Energy Scheduling Problem Usi...
收藏 引用
Cyber Resilience (ICCR), International Conference on
作者: Sharif Naser Makhadmeh Ammar Kamal Abasi Mohammed Azmi Al-Betar Department of Data Science and Artificial Intelligence University of Petra Amman Jordan Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) Abu Dhabi United Arab Emirates Artificial Intelligence Research Center (AIRC) Ajman University Ajman United Arab Emirates
The Energy Scheduling Problem (ESP) involves scheduling smart home appliances based on electricity pricing schemes. This entails adjusting the timing of operations for these appliances across different periods. The pr... 详细信息
来源: 评论
BIM: Improving Graph Neural Networks with Balanced Influence Maximization
BIM: Improving Graph Neural Networks with Balanced Influence...
收藏 引用
International Conference on data Engineering
作者: Wentao Zhang Xinyi Gao Ling Yang Meng Cao Ping Huang Jiulong Shan Hongzhi Yin Bin Cui Center for Machine Learning Research Peking University Institute of Advanced Algorithms Research Shanghai National Engineering Labratory for Big Data Analytics and Applications The University of Queensland Australia Key Lab of High Confidence Software Technologies Peking University Apple Inc. Institute of Computational Social Science Peking University Qingdao
The imbalanced data classification problem has aroused lots of concerns from both academia and industry since data imbalance is a widespread phenomenon in many real-world scenarios. Although this problem has been well... 详细信息
来源: 评论
Self-supervised multimodal neuroimaging yields predictive representations for a spectrum of Alzheimer's phenotypes
arXiv
收藏 引用
arXiv 2022年
作者: Fedorov, Alex Geenjaar, Eloy Wu, Lei Sylvain, Tristan DeRamus, Thomas P. Luck, Margaux Misiura, Maria Hjelm, R. Devon Plis, Sergey M. Calhoun, Vince D. Tri-Institutional Center for Translational Research in Neuroimaging and Data Science Georgia State Georgia Tech Emory AtlantaGA United States Mila - Quebec AI Institute MontréalQC Canada Apple Machine Learning Research SeattleWA United States Borealis AI MontréalQC Canada
Recent neuroimaging studies that focus on predicting brain disorders via modern machine learning approaches commonly include a single modality and rely on supervised over-parameterized models. However, a single modali... 详细信息
来源: 评论
Analyzing the Structure of Attention in a Transformer Language Model
arXiv
收藏 引用
arXiv 2019年
作者: Vig, Jesse Belinkov, Yonatan Palo Alto Research Center Machine Learning and Data Science Group Interaction and Analytics Lab Palo AltoCA United States Harvard John A. Paulson School of Engineering and Applied Sciences MIT Computer Science and Artificial Intelligence Laboratory CambridgeMA United States
The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks. In this paper, we analyze the structure of attention in a Transforme... 详细信息
来源: 评论
ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular data
ADVISor: Automatic Visualization Answer for Natural-Language...
收藏 引用
Pacific (formerly Asia-Pacific APVIS) Visualization Symposium
作者: Can Liu Yun Han Ruike Jiang Xiaoru Yuan Key Laboratory of Machine Perception (Ministry of Education) and School of EECS Peking University Beijing China National Engineering Laboratory for Big Data Analysis and Application Peking University Beijing China Beijing Engineering Technology Research Center of Virtual Simulation and Visualization Peking University Beijing China
We propose an automatic pipeline to generate visualization with annotations to answer natural-language questions raised by the public on tabular data. With a pre-trained language representation model, the input natura... 详细信息
来源: 评论
Improving generative model-based unfolding with Schrödinger bridges
收藏 引用
Physical Review D 2024年 第7期109卷 076011-076011页
作者: Sascha Diefenbacher Guan-Horng Liu Vinicius Mikuni Benjamin Nachman Weili Nie Physics Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Autonomous Control and Decision Systems Laboratory Georgia Institute of Technology Atlanta Georgia 30332 USA National Energy Research Scientific Computing Center Berkeley Lab Berkeley California 94720 USA Berkeley Institute for Data Science University of California Berkeley California 94720 USA Machine Learning Research Group NVIDIA Research
machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area; one based on discriminative models and one ba... 详细信息
来源: 评论
Pixelated Reconstruction of Foreground Density and Background Surface Brightness in Gravitational Lensing Systems using Recurrent Inference machines
arXiv
收藏 引用
arXiv 2023年
作者: Adam, Alexandre Perreault-Levasseur, Laurence Hezaveh, Yashar Welling, Max Department of Physics Université de Montréal Montréal Canada Mila - Quebec Artificial Intelligence Institute Montréal Canada Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Microsoft Research AI4Science
Modeling strong gravitational lenses in order to quantify the distortions in the images of background sources and to reconstruct the mass density in the foreground lenses has been a difficult computational challenge. ... 详细信息
来源: 评论
Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging
arXiv
收藏 引用
arXiv 2021年
作者: Hashemi, Ali Gao, Yijing Cai, Chang Ghosh, Sanjay Müller, Klaus-Robert Nagarajan, Srikantan S. Haufe, Stefan Uncertainty Inverse Modeling and Machine Learning Group Technische Universität Berlin Germany Machine Learning Group Technische Universität Berlin Germany Department of Radiology and Biomedical Imaging University of California San Francisco United States National Engineering Research Center for E-Learning Central China Normal University China BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Korea Republic of Max Planck Institute for Informatics Saarbrücken Germany Physikalisch-Technische Bundesanstalt Berlin Germany Charité – Universitätsmedizin Berlin Germany Bernstein Center for Computational Neuroscience Berlin Germany
Several problems in neuroimaging and beyond require inference on the parameters of multi-task sparse hierarchical regression models. Examples include M/EEG inverse problems, neural encoding models for task-based fMRI ... 详细信息
来源: 评论