咨询与建议

限定检索结果

文献类型

  • 208 篇 期刊文献
  • 87 篇 会议

馆藏范围

  • 295 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 194 篇 工学
    • 119 篇 计算机科学与技术...
    • 97 篇 软件工程
    • 42 篇 生物医学工程(可授...
    • 42 篇 生物工程
    • 32 篇 光学工程
    • 28 篇 信息与通信工程
    • 24 篇 电气工程
    • 20 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
  • 135 篇 理学
    • 60 篇 数学
    • 48 篇 生物学
    • 44 篇 物理学
    • 35 篇 统计学(可授理学、...
    • 15 篇 地球物理学
    • 12 篇 系统科学
  • 51 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 19 篇 工商管理
    • 19 篇 图书情报与档案管...
  • 42 篇 医学
    • 37 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 教育学

主题

  • 10 篇 deep learning
  • 10 篇 machine learning
  • 9 篇 image segmentati...
  • 8 篇 predictive model...
  • 7 篇 feature extracti...
  • 7 篇 accuracy
  • 6 篇 training
  • 5 篇 galaxies
  • 5 篇 neural networks
  • 5 篇 cosmology
  • 5 篇 tumors
  • 4 篇 object detection
  • 4 篇 task analysis
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 diseases
  • 3 篇 learning systems
  • 3 篇 reinforcement le...
  • 3 篇 semantic segment...
  • 3 篇 cancer

机构

  • 35 篇 center for data ...
  • 34 篇 center for machi...
  • 12 篇 beijing internat...
  • 11 篇 center for compu...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 ciela - montreal...
  • 8 篇 peking universit...
  • 8 篇 university of pe...
  • 7 篇 department of ra...
  • 7 篇 machine learning...
  • 7 篇 department of ph...
  • 7 篇 peking universit...
  • 7 篇 heidelberg
  • 6 篇 lab crestview ra...
  • 6 篇 helmholtz imagin...
  • 6 篇 translatum - cen...
  • 6 篇 school of mathem...
  • 6 篇 department of pa...
  • 6 篇 faculty of mathe...

作者

  • 11 篇 hezaveh yashar
  • 11 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 perreault-levass...
  • 10 篇 bin dong
  • 9 篇 bakas spyridon
  • 8 篇 li hongwei bran
  • 8 篇 kofler florian
  • 8 篇 ulrich constanti...
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 ezhov ivan
  • 7 篇 linguraru marius...
  • 7 篇 menze bjoern
  • 6 篇 hüllermeier eyke
  • 6 篇 wang chunhao
  • 6 篇 kazerooni anahit...
  • 6 篇 chung verena
  • 6 篇 dong bin
  • 6 篇 moawad ahmed w.

语言

  • 268 篇 英文
  • 25 篇 其他
  • 1 篇 中文
检索条件"机构=Research Center of Machine Learning and Data Analysis"
295 条 记 录,以下是41-50 订阅
排序:
PITFALLS OF EPISTEMIC UNCERTAINTY QUANTIFICATION THROUGH LOSS MINIMISATION
arXiv
收藏 引用
arXiv 2022年
作者: Bengs, Viktor Hüllermeier, Eyke Waegeman, Willem Germany Munich Center for Machine Learning Germany Department of Data Analysis and Mathematical Modeling Ghent University Belgium
Uncertainty quantification has received increasing attention in machine learning in the recent past. In particular, a distinction between aleatoric and epistemic uncertainty has been found useful in this regard. The l... 详细信息
来源: 评论
Blessemflood21: Advancing Flood analysis with a High-Resolution Georeferenced dataset for Humanitarian Aid Support
Blessemflood21: Advancing Flood Analysis with a High-Resolut...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Vladyslav Polushko Alexander Jenal Jens Bongartz Immanuel Weber Damjan Hatic Ronald Rösch Thomas März Markus Rauhut Andreas Weinmann Image Processing Department Fraunhofer ITWM Kaiserslautern Germany Working Group Algorithms for Computer Vision Imaging and Data Analysis Darmstadt Germany Center for Machine Learning and Sensor Technology Hochschule Koblenz Remagen Germany
Floods are an increasingly common global threat, causing emergencies and severe damage to infrastructure. During crises, organisations such as the World Food Programme use remotely sensed imagery, typically obtained t... 详细信息
来源: 评论
Hierarchical Multiview Top-k Pooling with Deep-Q-Networks
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第6期5卷 2985-2996页
作者: Li, Zhi-Peng Su, Hai-Long Wu, Yong- Zhang, Qin-Hu Yuan, Chang-An Gribova, Valeriya Filaretov, Vladimir Fedorovich Huang, De-Shuang Eastern Institute of Technology Zhejiang Ningbo315201 China University of Science and Technology of China School of Life Sciences Anhui Hefei230026 China Tongji University Institute of Machine Learning and Systems Biology School of Electronics and Information Engineering Shanghai201804 China Guangxi Academy of Sciences Institute of Big Data and Intelligent Computing Research Center Nanning530007 China Far Eastern Branch of the Russian Academy of Sciences Institute of Automation and Control Processes Vladivostok690041 Russia
Graph neural networks (GNNs) are extensions of deep neural networks to graph-structured data. It has already attracted widespread attention for various tasks such as node classification and link prediction. Existing r... 详细信息
来源: 评论
Towards Highly Efficient Anomaly Detection for Predictive Maintenance
Towards Highly Efficient Anomaly Detection for Predictive Ma...
收藏 引用
International Conference on machine learning and Applications (ICMLA)
作者: Simon Klüttermann Vanlal Peka Philipp Doebler Emmanuel Müller TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany Research Center Trustworthy Data Science and Security Dortmund Germany
This paper introduces SEAN, a novel anomaly detection algorithm designed for real-time applications in predictive maintenance. SEAN leverages an ensemble-based approach to deliver competitive performance while drastic... 详细信息
来源: 评论
MSI-UNet: A Flexible UNet-Based Multi-Scale Interactive Framework for 3D Gastric Tumor Segmentation on CT Scans
MSI-UNet: A Flexible UNet-Based Multi-Scale Interactive Fram...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Heyun Chen Zifan Chen Jie Zhao Haoshen Li Jiazheng Li Yiting Liu Mingze Yuan Peng Bao Xinyu Nan Bin Dong Lei Tang Li Zhang Center for Data Science Peking University China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Peking University Cancer Hospital&Institute China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China
Accurate segmentation of gastric tumors is critical yet presents a formidable challenge in medical imaging, where conventional UNet-based frameworks, despite their prevalence, falter on intricate tumor samples due to ... 详细信息
来源: 评论
SiriusBI: Building End-to-End Business Intelligence Enhanced by Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Jie Xie, Haining Shen, Yu Zhang, Zihan Lei, Meng Zheng, Yifeng Fang, Yide Li, Chunyou Huang, Danqing Zhang, Wentao Li, Yang Yang, Xiaofeng Cui, Bin Chen, Peng Department of Data Platform TEG Tencent Inc. China School of Computer Science Peking University China Center of Machine Learning Research Peking University China
The rapid advancement of AI technologies, particularly Large Language Models (LLMs), is establishing a new paradigm for Business Intelligence (BI). Despite the emergence of pioneering work in enhancing BI systems with... 详细信息
来源: 评论
Process-Aware Bayesian Networks for Sequential Event Log Queries
Process-Aware Bayesian Networks for Sequential Event Log Que...
收藏 引用
International Conference on Process Mining (ICPM)
作者: Simon Rauch Christian M. M. Frey Ludwig Zellner Thomas Seidl Database Systems and Data Mining LMU Munich Munich Germany Center for Applied Research on Supply Chain Services Fraunhofer IIS Nuremberg Germany Munich Center for Machine Learning Munich Germany
Business processes from many domains like manufacturing, healthcare, or business administration suffer from different amounts of uncertainty concerning the execution of individual activities and their order of occurre... 详细信息
来源: 评论
Investor Risk Profile Determination Model
Investor Risk Profile Determination Model
收藏 引用
International Conference on Management of Large-Scale System Development (MLSD)
作者: Victor Gorelik Tatiana Zolotova Department of Simulation Systems and Operations Research Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences Moscow Russia Department of Data Analysis and Machine Learning Financial University Under the Government of the Russian Federation Moscow Russia
An assessment of the investor’s risk profile is proposed as a risk coefficient in a model with a linear convolution of expected return and variance. The value of the risk coefficient is found from solving the optimiz...
来源: 评论
RVPD: An Automated System for Calculating the Tortuosity and Bifurcation Angles of Retinal Vessels to Predict Diseases
RVPD: An Automated System for Calculating the Tortuosity and...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Guangzhengao Yang Xingyu Luo Jie Zhao Fangfang Fan Haoshen Li Bin Dong Li Zhang Yan Zhang Center for Data Science Peking University China Department of Cardiology Peking University First Hospital China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China National Biomedical Imaging Center Peking University China
Hypertension and diabetes are known to potentially cause morphological changes in the retinal capillary system, yet quantifying these changes presents significant challenges. This research addresses this issue by desi... 详细信息
来源: 评论
Perception datasets for Anomaly Detection in Autonomous Driving: A Survey
arXiv
收藏 引用
arXiv 2023年
作者: Bogdoll, Daniel Uhlemeyer, Svenja Kowol, Kamil Zöllner, J. Marius FZI Research Center for Information Technology Germany Karlsruhe Institute of Technology Germany University of Wuppertal Germany Interdisciplinary Center for Machine Learning and Data Analytics Germany
Deep neural networks (DNN) which are employed in perception systems for autonomous driving require a huge amount of data to train on, as they must reliably achieve high performance in all kinds of situations. However,... 详细信息
来源: 评论