咨询与建议

限定检索结果

文献类型

  • 211 篇 期刊文献
  • 93 篇 会议
  • 3 册 图书

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 120 篇 计算机科学与技术...
    • 97 篇 软件工程
    • 42 篇 生物医学工程(可授...
    • 42 篇 生物工程
    • 32 篇 光学工程
    • 28 篇 信息与通信工程
    • 24 篇 电气工程
    • 20 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
  • 135 篇 理学
    • 60 篇 数学
    • 48 篇 生物学
    • 44 篇 物理学
    • 35 篇 统计学(可授理学、...
    • 15 篇 地球物理学
    • 12 篇 系统科学
  • 51 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 19 篇 工商管理
    • 19 篇 图书情报与档案管...
  • 42 篇 医学
    • 37 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 教育学

主题

  • 12 篇 machine learning
  • 10 篇 deep learning
  • 9 篇 image segmentati...
  • 8 篇 predictive model...
  • 7 篇 feature extracti...
  • 7 篇 accuracy
  • 6 篇 training
  • 5 篇 galaxies
  • 5 篇 neural networks
  • 5 篇 cosmology
  • 5 篇 artificial intel...
  • 5 篇 tumors
  • 4 篇 object detection
  • 4 篇 task analysis
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 decision making
  • 4 篇 diseases
  • 3 篇 learning systems
  • 3 篇 reinforcement le...

机构

  • 35 篇 center for data ...
  • 34 篇 center for machi...
  • 12 篇 beijing internat...
  • 11 篇 center for compu...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 ciela - montreal...
  • 8 篇 peking universit...
  • 8 篇 university of pe...
  • 7 篇 department of ra...
  • 7 篇 machine learning...
  • 7 篇 school of mathem...
  • 7 篇 department of ph...
  • 7 篇 peking universit...
  • 7 篇 heidelberg
  • 6 篇 lab crestview ra...
  • 6 篇 helmholtz imagin...
  • 6 篇 translatum - cen...
  • 6 篇 department of pa...
  • 6 篇 faculty of mathe...

作者

  • 11 篇 hezaveh yashar
  • 11 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 perreault-levass...
  • 10 篇 bin dong
  • 9 篇 bakas spyridon
  • 8 篇 li hongwei bran
  • 8 篇 kofler florian
  • 8 篇 ulrich constanti...
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 ezhov ivan
  • 7 篇 linguraru marius...
  • 7 篇 menze bjoern
  • 6 篇 hüllermeier eyke
  • 6 篇 wang chunhao
  • 6 篇 kazerooni anahit...
  • 6 篇 chung verena
  • 6 篇 dong bin
  • 6 篇 moawad ahmed w.

语言

  • 280 篇 英文
  • 25 篇 其他
  • 1 篇 中文
检索条件"机构=Research Center of Machine Learning and Data Analysis"
307 条 记 录,以下是61-70 订阅
排序:
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
RecycleNet: Latent Feature Recycling Leads to Iterative Deci...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Gregor Koehler Tassilo Wald Constantin Ulrich David Zimmerer Paul F. Jaeger Jörg K. H. Franke Simon Kohl Fabian Isensee Klaus H. Maier-Hein Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Information and Data Science School for Health Karlsruhe/Heidelberg Germany Helmholtz Imaging DKFZ National Center for Tumor Diseases (NCT) NCT Heidelberg a Partnership Between DKFZ University Medical Center Heidelberg Interactive Machine Learning Group DKFZ Machine Learning Lab University of Freiburg Freiburg Germany Latent Labs (***) London UK Applied Computer Vision Lab DKFZ Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu...
来源: 评论
Can a bifurcation diagram contain loops?
Can a bifurcation diagram contain loops?
收藏 引用
2021 International Conference "Nonlinearity, Information and Robotics", NIR 2021
作者: Palshin, Gleb P. Ryabov, Pavel E. Sokolov, Sergei V. Financial University Department of Data Analysis and Machine Learning Moscow Russia Moscow Institute of Physics and Technology National Research University Department of Theoretical Mechanics Moscow Region Dolgoprudny Russia
The bifurcation diagram plays a major role in the study of the phase topology of completely Liouville-integrable Hamiltonian systems. In the works of A.T. Fomenko and A.V. Bolsinov, the problem of the permissible form... 详细信息
来源: 评论
Object Detection in 3D Point Clouds via Local Correlation-Aware Point Embedding
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Chengzhi Pfrommer, Julius Beyerer, Jürgen Li, Kangning Neubert, Boris Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Karlsruhe Germany Fraunhofer Center for Machine Learning Fraunhofer IOSB Karlsruhe Germany Institute for Visualization and Data Analysis Karlsruhe Institute of Technology Karlsruhe Germany
We present an improved approach for 3D object detection in point clouds data based on the Frustum PointNet (F-PointNet). Compared to the original F-PointNet, our newly proposed method considers the point neighborhood ... 详细信息
来源: 评论
On the Effectiveness of Heterogeneous Ensemble Methods for Re-Identification
On the Effectiveness of Heterogeneous Ensemble Methods for R...
收藏 引用
International Conference on machine learning and Applications (ICMLA)
作者: Simon Klüttermann Jérôme Rutinowski Frederik Polachowski Anh Nguyen Britta Grimme Moritz Roidl Emmanuel Müller TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany Paderborn University Paderborn Germany Research Center Trustworthy Data Science and Security Dortmund Germany
In this contribution, we introduce a novel ensemble method for the re-identification of industrial entities, using images of chipwood pallets and galvanized metal plates as dataset examples. Our algorithms replace com... 详细信息
来源: 评论
PAM: A Propagation-Based Model for Segmenting Any 3D Objects across Multi-Modal Medical Images
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zifan Nan, Xinyu Li, Jiazheng Zhao, Jie Li, Haifeng Lin, Ziling Li, Haoshen Chen, Heyun Liu, Yiting Tang, Lei Zhang, Li Dong, Bin Center for Data Science Peking University Beijing China Department of Radiology Key Laboratory of Carcinogenesis and Translational Research Ministry of Education Peking University Cancer Hospital and Institute Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China Peking University Beijing China Center for Machine Learning Research Peking University Beijing China National Biomedical Imaging Center Peking University Beijing China
Background: Volumetric segmentation is crucial for medical imaging applications but faces significant challenges. Current approaches often require extensive manual annotations and scenario-specific model training, lim... 详细信息
来源: 评论
xMIL: Insightful Explanations for Multiple Instance learning in Histopathology  38
xMIL: Insightful Explanations for Multiple Instance Learning...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Hense, Julius Idaji, Mina Jamshidi Eberle, Oliver Schnake, Thomas Dippel, Jonas Ciernik, Laure Buchstab, Oliver Mock, Andreas Klauschen, Frederick Müller, Klaus-Robert Berlin Institute for the Foundations of Learning and Data Berlin Germany Machine Learning Group Technische Universität Berlin Berlin Germany Aignostics GmbH Berlin Germany Institute of Pathology Ludwig Maximilian University Munich Germany German Cancer Research Center Heidelberg Germany German Cancer Consortium Munich Germany Institute of Pathology Charité Universitätsmedizin Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max-Planck Institute for Informatics Saarbrücken Germany
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker...
来源: 评论
Improving Generalization and Convergence by Enhancing Implicit Regularization
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Mingze Wang, Jinbo He, Haotian Wang, Zilin Huang, Guanhua Xiong, Feiyu Li, Zhiyu Weinan, E. Wu, Lei School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China China AI for Science Institute China School of Data Science University of Science and Technology of China China ByteDance Research China
In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decou... 详细信息
来源: 评论
Using Convolutional Neural Network to Classify 2D EEG Scalp Topograms during Visual Task  5
Using Convolutional Neural Network to Classify 2D EEG Scalp ...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Korchagin, Sergey Maksimenko, Vladimir Hramov, Alexander Department of Data Analysis and Machine Learning Financial University under the Government of the Russian Federation Moscow Russia Institute of Information Technologies Mathematics and Mechanics Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
we developed an artificial neural network (ANN) classifier to analyze the cortical activity signals during visual information processing. We tested several ANN architectures and chose a convolutional neural network (C... 详细信息
来源: 评论
Stroke Home Rehabilitation Approach Using Mobile Application Based on PostNet machine learning Model  23
Stroke Home Rehabilitation Approach Using Mobile Application...
收藏 引用
7th International Conference on Medical and Health Informatics, ICMHI 2023
作者: Das, Utpal Chandra Le, Ngoc Thien Benjapolakul, Watit Vitoonpong, Timporn Pluempitiwiriyawej, Charnchai Center of Excellence in Artificial Intelligence Machine Learning and Smart Grid Technology Department of Electrical Engineering Chulalongkorn University Bangkok10330 Thailand Department of Rehabilitation Medicine Faculty of Medicine Chulalongkorn University Bangkok10330 Thailand Multimedia Data Analytics and Processing Research Unit Department of Electrical Engineering Faculty of Engineering Chulalongkorn University Bangkok10330 Thailand
Stroke is a significant cause of mortality and disability globally, with its occurrence in the human brain and motor function being linked to various parts of the human body. Stroke victims often experience disabiliti... 详细信息
来源: 评论
xMIL: insightful explanations for multiple instance learning in histopathology  24
xMIL: insightful explanations for multiple instance learning...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Julius Hense Mina Jamshidi Idaji Oliver Eberle Thomas Schnake Jonas Dippel Laure Ciernik Oliver Buchstab Andreas Mock Frederick Klauschen Klaus-Robert Müller Berlin Institute for the Foundations of Learning and Data Berlin Germany and Machine Learning Group Technische Universität Berlin Berlin Germany Berlin Institute for the Foundations of Learning and Data Berlin Germany and Machine Learning Group Technische Universität Berlin Berlin Germany and Aignostics GmbH Berlin Germany Institute of Pathology Ludwig Maximilian University Munich Germany Institute of Pathology Ludwig Maximilian University Munich Germany and German Cancer Research Center Heidelberg and German Cancer Consortium Munich Germany Berlin Institute for the Foundations of Learning and Data Berlin Germany and Institute of Pathology Ludwig Maximilian University Munich Germany and German Cancer Research Center Heidelberg and German Cancer Consortium Munich Germany and Institute of Pathology Charité Universitätsmedizin Berlin Germany Berlin Institute for the Foundations of Learning and Data Berlin Germany and Machine Learning Group Technische Universität Berlin Berlin Germany and Department of Artificial Intelligence Korea University Seoul Korea and Max-Planck Institute for Informatics Saarbrücken Germany
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker...
来源: 评论