咨询与建议

限定检索结果

文献类型

  • 211 篇 期刊文献
  • 87 篇 会议
  • 3 册 图书

馆藏范围

  • 301 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 119 篇 计算机科学与技术...
    • 96 篇 软件工程
    • 42 篇 生物医学工程(可授...
    • 42 篇 生物工程
    • 32 篇 光学工程
    • 28 篇 信息与通信工程
    • 24 篇 电气工程
    • 20 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
  • 136 篇 理学
    • 59 篇 数学
    • 48 篇 生物学
    • 44 篇 物理学
    • 34 篇 统计学(可授理学、...
    • 17 篇 地球物理学
    • 12 篇 系统科学
  • 51 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 19 篇 工商管理
    • 19 篇 图书情报与档案管...
  • 43 篇 医学
    • 38 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 教育学

主题

  • 12 篇 machine learning
  • 11 篇 deep learning
  • 9 篇 image segmentati...
  • 8 篇 predictive model...
  • 7 篇 feature extracti...
  • 7 篇 accuracy
  • 6 篇 training
  • 5 篇 galaxies
  • 5 篇 neural networks
  • 5 篇 cosmology
  • 5 篇 artificial intel...
  • 5 篇 tumors
  • 4 篇 object detection
  • 4 篇 task analysis
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 benchmarking
  • 4 篇 diseases
  • 3 篇 learning systems
  • 3 篇 reinforcement le...

机构

  • 35 篇 center for data ...
  • 34 篇 center for machi...
  • 12 篇 beijing internat...
  • 11 篇 center for compu...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 ciela - montreal...
  • 8 篇 peking universit...
  • 8 篇 university of pe...
  • 7 篇 department of ra...
  • 7 篇 machine learning...
  • 7 篇 department of ph...
  • 7 篇 peking universit...
  • 7 篇 heidelberg
  • 6 篇 lab crestview ra...
  • 6 篇 helmholtz imagin...
  • 6 篇 translatum - cen...
  • 6 篇 school of mathem...
  • 6 篇 department of pa...
  • 6 篇 faculty of mathe...

作者

  • 11 篇 hezaveh yashar
  • 11 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 perreault-levass...
  • 10 篇 bin dong
  • 9 篇 bakas spyridon
  • 8 篇 li hongwei bran
  • 8 篇 kofler florian
  • 8 篇 ulrich constanti...
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 ezhov ivan
  • 7 篇 linguraru marius...
  • 7 篇 menze bjoern
  • 6 篇 hüllermeier eyke
  • 6 篇 wang chunhao
  • 6 篇 kazerooni anahit...
  • 6 篇 chung verena
  • 6 篇 dong bin
  • 6 篇 moawad ahmed w.

语言

  • 274 篇 英文
  • 25 篇 其他
  • 1 篇 中文
检索条件"机构=Research Center of Machine Learning and Data Analysis"
301 条 记 录,以下是81-90 订阅
排序:
Perception datasets for Anomaly Detection in Autonomous Driving: A Survey
arXiv
收藏 引用
arXiv 2023年
作者: Bogdoll, Daniel Uhlemeyer, Svenja Kowol, Kamil Zöllner, J. Marius FZI Research Center for Information Technology Germany Karlsruhe Institute of Technology Germany University of Wuppertal Germany Interdisciplinary Center for Machine Learning and Data Analytics Germany
Deep neural networks (DNN) which are employed in perception systems for autonomous driving require a huge amount of data to train on, as they must reliably achieve high performance in all kinds of situations. However,... 详细信息
来源: 评论
Perception datasets for Anomaly Detection in Autonomous Driving: A Survey
Perception Datasets for Anomaly Detection in Autonomous Driv...
收藏 引用
IEEE Symposium on Intelligent Vehicle
作者: Daniel Bogdoll Svenja Uhlemeyer Kamil Kowol J. Marius Zöllner FZI Research Center for Information Technology Germany Karlsruhe Institute of Technology Germany University of Wuppertal Germany Interdisciplinary Center for Machine Learning and Data Analytics Germany
Deep neural networks (DNN) which are employed in perception systems for autonomous driving require a huge amount of data to train on, as they must reliably achieve high performance in all kinds of situations. However,...
来源: 评论
Deliberative XAI: How Explanations Impact Understanding and Decision-Making of AI Novices in Collective and Individual Settings
arXiv
收藏 引用
arXiv 2024年
作者: Schmude, Timothée Koesten, Laura Möller, Torsten Tschiatschek, Sebastian University of Vienna Faculty of Computer Science Research Network Data Science Doctoral School Computer Science Austria University of Vienna Faculty of Computer Science Research Group Visualization and Data Analysis Austria University of Vienna Faculty of Computer Science Research Group Visualization and Data Analysis Research Network Data Science Austria University of Vienna Faculty of Computer Science Research Network Data Science Research Group Data Mining and Machine Learning Austria
XAI research often focuses on settings where people learn about and assess algorithmic systems individually. However, as more public AI systems are deployed, it becomes essential for XAI to facilitate collective under...
来源: 评论
On the Impact of Explanations on Understanding of Algorithmic Decision-Making
arXiv
收藏 引用
arXiv 2023年
作者: Schmude, Timothée Koesten, Laura Möller, Torsten Tschiatschek, Sebastian University of Vienna Faculty of Computer Science Research Network Data Science UniVie Doctoral School Computer Science DoCS Austria University of Vienna Faculty of Computer Science Research Group Visualization and Data Analysis Austria University of Vienna Faculty of Computer Science Research Network Data Science Research Group Visualization and Data Analysis Austria University of Vienna Faculty of Computer Science Research Network Data Science Research Group Data Mining and Machine Learning Austria
Ethical principles for algorithms are gaining importance as more and more stakeholders are affected by "high-risk" algorithmic decision-making (ADM) systems. Understanding how these systems work enables stak... 详细信息
来源: 评论
Your Transformer May Not be as Powerful as You Expect  36
Your Transformer May Not be as Powerful as You Expect
收藏 引用
36th Conference on Neural Information Processing Systems, NeurIPS 2022
作者: Luo, Shengjie Li, Shanda Zheng, Shuxin Liu, Tie-Yan Wang, Liwei He, Di National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University China Machine Learning Department School of Computer Science Carnegie Mellon University United States Microsoft Research United States Center for Data Science Peking University China Zhejiang Lab China
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding... 详细信息
来源: 评论
Applying Interdisciplinary Frameworks to Understand Algorithmic Decision-Making
arXiv
收藏 引用
arXiv 2023年
作者: Schmude, Timothée Koesten, Laura Möller, Torsten Tschiatschek, Sebastian University of Vienna Faculty of Computer Science Research Network Data Science UniVie Doctoral School Computer Science DoCS Austria University of Vienna Faculty of Computer Science Research Group Visualization and Data Analysis Austria University of Vienna Faculty of Computer Science Research Network Data Science Research Group Visualization and Data Analysis Austria University of Vienna Faculty of Computer Science Research Network Data Science Research Group Data Mining and Machine Learning Austria
We argue that explanations for "algorithmic decision-making" (ADM) systems can profit by adopting practices that are already used in the learning sciences. We shortly introduce the importance of explaining A... 详细信息
来源: 评论
NC-ALG: Graph-Based Active learning under Noisy Crowd  40
NC-ALG: Graph-Based Active Learning under Noisy Crowd
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Zhang, Wentao Wang, Yexin You, Zhenbang Li, Yang Cao, Gang Yang, Zhi Cui, Bin Center for Machine Learning Research Peking University China Key Lab of High Confidence Software Technologies Peking University China Institute of Advanced Algorithms Research Shanghai China Institute of Computational Social Science Peking University Qingdao China National Engineering Labratory for Big Data Analytics and Applications China TEG Tencent Inc. Department of Data Platform China Beijing Academy of Artificial Intelligence China
Graph Neural Networks (GNNs) have achieved great success in various data mining tasks but they heavily rely on a large number of annotated nodes, requiring considerable human efforts. Despite the effectiveness of exis... 详细信息
来源: 评论
Optimal neural summarization for full-field weak lensing cosmological implicit inference
收藏 引用
Astronomy and Astrophysics 2025年 697卷
作者: Lanzieri, Denise Zeghal, Justine Lucas Makinen, T. Boucaud, Alexandre Starck, Jean-Luc Lanusse, François Université Paris Cité Université Paris-Saclay CEA CNRS AIM Gif-sur-Yvette F-91191 France Université Paris Cité CNRS Paris F-75013 France Imperial Centre for Inference and Cosmology (ICIC) & Astrophysics Group Imperial College London Blackett Laboratory Prince Consort Road London SW7 2AZ United Kingdom Université Paris-Saclay Université Paris Cité CEA CNRS AIM Gif-sur-Yvette 91191 France Sony Computer Science Laboratories - Rome Joint Initiative CREF-SONY Centro Ricerche Enrico Fermi Via Panisperna 89/A Rome 00184 Italy Institutes of Computer Science and Astrophysics Foundation for Research and Technology Hellas (FORTH) Heraklion 70013 Greece Center for Computational Astrophysics Flatiron Institute 162 5th Ave New York 10010 NY United States Department of Physics Université de Montréal Montréal H2V 0B3 Canada Mila - Quebec Artificial Intelligence Institute Montréal H2S 3H1 Canada Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal H2V 0B3 Canada
Context. Traditionally, weak lensing cosmological surveys have been analyzed using summary statistics that were either motivated by their analytically tractable likelihoods (e.g., power spectrum) or by their ability t... 详细信息
来源: 评论
BIM: Improving Graph Neural Networks with Balanced Influence Maximization  40
BIM: Improving Graph Neural Networks with Balanced Influence...
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Zhang, Wentao Gao, Xinyi Yang, Ling Cao, Meng Huang, Ping Shan, Jiulong Yin, Hongzhi Cui, Bin Peking University Center for Machine Learning Research China Institute of Advanced Algorithms Research Shanghai China National Engineering Labratory for Big Data Analytics and Applications The University of Queensland Australia Peking University Key Lab of High Confidence Software Technologies China Apple Inc. Institute of Computational Social Science Peking University Qingdao China
The imbalanced data classification problem has aroused lots of concerns from both academia and industry since data imbalance is a widespread phenomenon in many real-world scenarios. Although this problem has been well... 详细信息
来源: 评论
On the Effectiveness of Heterogeneous Ensemble Methods for Re-identification
arXiv
收藏 引用
arXiv 2024年
作者: Klüttermann, Simon Rutinowski, Jérôme Nguyen, Anh Grimme, Britta Roidl, Moritz Müller, Emmanuel TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany Research Center Trustworthy Data Science and Security Germany
In this contribution, we introduce a novel ensemble method for the re-identification of industrial entities, using images of chipwood pallets and galvanized metal plates as dataset examples. Our algorithms replace com... 详细信息
来源: 评论