咨询与建议

限定检索结果

文献类型

  • 54 篇 期刊文献
  • 17 篇 会议

馆藏范围

  • 71 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 53 篇 工学
    • 37 篇 计算机科学与技术...
    • 36 篇 软件工程
    • 18 篇 控制科学与工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 生物工程
    • 5 篇 光学工程
    • 2 篇 动力工程及工程热...
    • 2 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 电气工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 安全科学与工程
  • 28 篇 理学
    • 13 篇 数学
    • 9 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 4 篇 物理学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
  • 12 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 6 篇 医学
    • 5 篇 临床医学
    • 4 篇 公共卫生与预防医...
    • 3 篇 基础医学(可授医学...
  • 4 篇 教育学
    • 4 篇 教育学
  • 1 篇 农学

主题

  • 12 篇 reinforcement le...
  • 4 篇 artificial intel...
  • 3 篇 humanoid robots
  • 3 篇 machine learning
  • 2 篇 efficiency
  • 2 篇 adversarial mach...
  • 2 篇 costs
  • 2 篇 decision making
  • 2 篇 feature extracti...
  • 2 篇 probabilistic lo...
  • 2 篇 deep reinforceme...
  • 2 篇 training
  • 1 篇 non-convex optim...
  • 1 篇 citizen science
  • 1 篇 friction compens...
  • 1 篇 representation l...
  • 1 篇 random forest
  • 1 篇 ensemble learnin...
  • 1 篇 humanities
  • 1 篇 metaheuristics

机构

  • 11 篇 hessian.ai
  • 10 篇 research departm...
  • 9 篇 department of co...
  • 7 篇 center for cogni...
  • 6 篇 centre for cogni...
  • 6 篇 systems ai for r...
  • 5 篇 computer science...
  • 4 篇 center for artif...
  • 4 篇 research departm...
  • 3 篇 industrial ai re...
  • 3 篇 department of in...
  • 3 篇 department of co...
  • 3 篇 department of co...
  • 3 篇 neuroinformatics...
  • 3 篇 heidelberg
  • 2 篇 helmholtz ai
  • 2 篇 department of co...
  • 2 篇 division of envi...
  • 2 篇 mendel universit...
  • 2 篇 school of comput...

作者

  • 24 篇 peters jan
  • 7 篇 jan peters
  • 6 篇 chalvatzaki geor...
  • 5 篇 tateo davide
  • 5 篇 lutter michael
  • 4 篇 palenicek daniel
  • 4 篇 georgia chalvatz...
  • 4 篇 d'eramo carlo
  • 3 篇 bakas spyridon
  • 3 篇 macke jakob h.
  • 3 篇 kofler florian
  • 3 篇 bohlinger nico
  • 3 篇 park tae-hyoung
  • 3 篇 carvalho joão
  • 3 篇 belousov boris
  • 2 篇 mongan john
  • 2 篇 tavares tiago r.
  • 2 篇 kirschke jan
  • 2 篇 costa marcelo m.
  • 2 篇 wu bingbing

语言

  • 64 篇 英文
  • 3 篇 朝鲜文
  • 3 篇 其他
检索条件"机构=Research Department: Systems AI for Robot Learning"
71 条 记 录,以下是1-10 订阅
排序:
One Policy to Run Them All: an End-to-end learning Approach to Multi-Embodiment Locomotion  8
One Policy to Run Them All: an End-to-end Learning Approach ...
收藏 引用
8th Conference on robot learning, CoRL 2024
作者: Bohlinger, Nico Czechmanowski, Grzegorz Krupka, Maciej Kicki, Piotr Walas, Krzysztof Peters, Jan Tateo, Davide Department of Computer Science Technical University of Darmstadt Germany Institute of Robotics and Machine Intelligence Poznan University of Technology Poland Research Department: Systems AI for Robot Learning Germany IDEAS NCBR Warsaw Poland Hessian.AI Germany Centre for Cognitive Science Germany
Deep Reinforcement learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is... 详细信息
来源: 评论
DIMINISHING RETURN OF VALUE EXPANSION METHODS IN MODEL-BASED REINFORCEMENT learning  11
DIMINISHING RETURN OF VALUE EXPANSION METHODS IN MODEL-BASED...
收藏 引用
11th International Conference on learning Representations, ICLR 2023
作者: Palenicek, Daniel Lutter, Michael Carvalho, João Peters, Jan Intelligent Autonomous Systems Technical University of Darmstadt Germany Hessian.AI Hochschulstr. 10 Darmstadt64293 Germany Research Department: Systems AI for Robot Learning Germany Centre for Cognitive Science Hochschulstr. 10 Darmstadt64293 Germany
Model-based reinforcement learning is one approach to increase sample efficiency. However, the accuracy of the dynamics model and the resulting compounding error over modelled trajectories are commonly regarded as key... 详细信息
来源: 评论
Safe and Efficient Path Planning under Uncertainty via Deep Collision Probability Fields
arXiv
收藏 引用
arXiv 2024年
作者: Herrmann, Felix Zach, Sebastian Banfi, Jacopo Peters, Jan Chalvatzaki, Georgia Tateo, Davide Computer Science department TU Darmstadt Germany Hessian.AI Germany Research Department: Systems AI for Robot Learning Germany
Estimating collision probabilities between robots and environmental obstacles or other moving agents is crucial to ensure safety during path planning. This is an important building block of modern planning algorithms ... 详细信息
来源: 评论
ROBUST ADVERSARIAL REINFORCEMENT learning VIA BOUNDED RATIONALITY CURRICULA  12
ROBUST ADVERSARIAL REINFORCEMENT LEARNING VIA BOUNDED RATION...
收藏 引用
12th International Conference on learning Representations, ICLR 2024
作者: Reddi, Aryaman Tölle, Maximilian Peters, Jan Chalvatzaki, Georgia D'Eramo, Carlo Department of Computer Science TU Darmstadt Germany Germany Systems AI for Robot Learning Germany Center for Cognitive Science TU Darmstadt Germany Center for Artificial Intelligence and Data Science University of Würzburg Germany
Robustness against adversarial attacks and distribution shifts is a long-standing goal of Reinforcement learning (RL). To this end, Robust Adversarial Reinforcement learning (RARL) trains a protagonist against destabi... 详细信息
来源: 评论
MULTI-TASK REINFORCEMENT learning WITH MIXTURE OF ORTHOGONAL EXPERTS  12
MULTI-TASK REINFORCEMENT LEARNING WITH MIXTURE OF ORTHOGONAL...
收藏 引用
12th International Conference on learning Representations, ICLR 2024
作者: Hendawy, Ahmed Peters, Jan D'Eramo, Carlo Department of Computer Science TU Darmstadt Germany Germany Center for Cognitive Science TU Darmstadt Germany Systems AI for Robot Learning Germany Center for Artificial Intelligence and Data Science University of Würzburg Germany
Multi-Task Reinforcement learning (MTRL) tackles the long-standing problem of endowing agents with skills that generalize across a variety of problems. To this end, sharing representations plays a fundamental role in ... 详细信息
来源: 评论
Gait in Eight: Efficient On-robot learning for Omnidirectional Quadruped Locomotion
arXiv
收藏 引用
arXiv 2025年
作者: Bohlinger, Nico Kinzel, Jonathan Palenicek, Daniel Antczak, Lukasz Peters, Jan Department of Computer Science Technical University of Darmstadt Germany hessian.AI. MAB Robtics Poznan Poland Research Department: Systems AI for Robot Learning Germany Germany
On-robot Reinforcement learning is a promising approach to train embodiment-aware policies for legged robots. However, the computational constraints of real-time learning on robots pose a significant challenge. We pre... 详细信息
来源: 评论
Safe Reinforcement learning of Dynamic High-Dimensional robotic Tasks: Navigation, Manipulation, Interaction
Safe Reinforcement Learning of Dynamic High-Dimensional Robo...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Puze Liu Kuo Zhang Davide Tateo Snehal Jauhri Zhiyuan Hu Jan Peters Georgia Chalvatzaki Computer Science Department Technical University Darmstadt Research Department: Systems AI for Robot Learning German Research Center for AI (DFKI) Hessian.AI Centre for Cognitive Science
Safety is a fundamental property for the real-world deployment of robotic platforms. Any control policy should avoid dangerous actions that could harm the environment, humans, or the robot itself. In reinforcement lea...
来源: 评论
Diminishing Return of Value Expansion Methods
arXiv
收藏 引用
arXiv 2024年
作者: Palenicek, Daniel Lutter, Michael Carvalho, João Dennert, Daniel Ahmad, Faran Peters, Jan Technical University of Darmstadt Germany FG Intelligent Autonomous Systems Hessian.AI Germany Research Department: Systems AI for Robot Learning The Centre for Cognitive Science Technical University of Darmstadt Germany Germany
Model-based reinforcement learning aims to increase sample efficiency, but the accuracy of dynamics models and the resulting compounding errors are often seen as key limitations. This paper empirically investigates po...
来源: 评论
Model-Based Uncertainty in Value Functions
arXiv
收藏 引用
arXiv 2023年
作者: Luis, Carlos E. Bottero, Alessandro G. Vinogradska, Julia Berkenkamp, Felix Peters, Jan Bosch Center for Artificial Intelligence India Institute for Intelligent Autonomous Systems TU Darmstadt Germany Research Department: Systems AI for Robot Learning Germany Hessian.AI
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning. In particular, we focus on characterizing the variance over values induced by a distribution o... 详细信息
来源: 评论
Coherent soft imitation learning  23
Coherent soft imitation learning
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing systems
作者: Joe Watson Sandy H. Huang Nicolas Heess TU Darmstadt Dannstadt Gennany and Systems AI for Robot Learning German Research Center for AI Google DeepMind London United Kingdom
Imitation learning methods seek to learn from an expert either through behavioral cloning (BC) for the policy or inverse reinforcement learning (IRL) for the reward. Such methods enable agents to learn complex tasks f...
来源: 评论