咨询与建议

限定检索结果

文献类型

  • 54 篇 期刊文献
  • 17 篇 会议

馆藏范围

  • 71 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 53 篇 工学
    • 37 篇 计算机科学与技术...
    • 36 篇 软件工程
    • 18 篇 控制科学与工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 生物工程
    • 5 篇 光学工程
    • 2 篇 动力工程及工程热...
    • 2 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 电气工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 安全科学与工程
  • 28 篇 理学
    • 13 篇 数学
    • 9 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 4 篇 物理学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
  • 12 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 6 篇 医学
    • 5 篇 临床医学
    • 4 篇 公共卫生与预防医...
    • 3 篇 基础医学(可授医学...
  • 4 篇 教育学
    • 4 篇 教育学
  • 1 篇 农学

主题

  • 12 篇 reinforcement le...
  • 4 篇 artificial intel...
  • 3 篇 humanoid robots
  • 3 篇 machine learning
  • 2 篇 efficiency
  • 2 篇 adversarial mach...
  • 2 篇 costs
  • 2 篇 decision making
  • 2 篇 feature extracti...
  • 2 篇 probabilistic lo...
  • 2 篇 deep reinforceme...
  • 2 篇 training
  • 1 篇 non-convex optim...
  • 1 篇 citizen science
  • 1 篇 friction compens...
  • 1 篇 representation l...
  • 1 篇 random forest
  • 1 篇 ensemble learnin...
  • 1 篇 humanities
  • 1 篇 metaheuristics

机构

  • 11 篇 hessian.ai
  • 10 篇 research departm...
  • 9 篇 department of co...
  • 7 篇 center for cogni...
  • 6 篇 centre for cogni...
  • 6 篇 systems ai for r...
  • 5 篇 computer science...
  • 4 篇 center for artif...
  • 4 篇 research departm...
  • 3 篇 industrial ai re...
  • 3 篇 department of in...
  • 3 篇 department of co...
  • 3 篇 department of co...
  • 3 篇 neuroinformatics...
  • 3 篇 heidelberg
  • 2 篇 helmholtz ai
  • 2 篇 department of co...
  • 2 篇 division of envi...
  • 2 篇 mendel universit...
  • 2 篇 school of comput...

作者

  • 24 篇 peters jan
  • 7 篇 jan peters
  • 6 篇 chalvatzaki geor...
  • 5 篇 tateo davide
  • 5 篇 lutter michael
  • 4 篇 palenicek daniel
  • 4 篇 georgia chalvatz...
  • 4 篇 d'eramo carlo
  • 3 篇 bakas spyridon
  • 3 篇 macke jakob h.
  • 3 篇 kofler florian
  • 3 篇 bohlinger nico
  • 3 篇 park tae-hyoung
  • 3 篇 carvalho joão
  • 3 篇 belousov boris
  • 2 篇 mongan john
  • 2 篇 tavares tiago r.
  • 2 篇 kirschke jan
  • 2 篇 costa marcelo m.
  • 2 篇 wu bingbing

语言

  • 64 篇 英文
  • 3 篇 朝鲜文
  • 3 篇 其他
检索条件"机构=Research Department: Systems AI for Robot Learning"
71 条 记 录,以下是11-20 订阅
排序:
Unsupervised Skill Discovery for robotic Manipulation through Automatic Task Generation  23
Unsupervised Skill Discovery for Robotic Manipulation throug...
收藏 引用
23rd IEEE-RAS International Conference on Humanoid robots, Humanoids 2024
作者: Jansonnie, Paul Wu, Bingbing Perez, Julien Peters, Jan Naver Labs Europe 6 chemin de Maupertuis Meylan38240 France Department of Computer Science Tu Darmstadt Germany Le Kremlin-BicêtreFR-94276 France Systems Ai for Robot Learning Germany Center for Cognitive Science Tu Darmstadt Germany Germany
learning skills that interact with objects is of major importance for robotic manipulation. These skills can indeed serve as an efficient prior for solving various manipulation tasks. We propose a novel Skill learning... 详细信息
来源: 评论
Tracking Control for a Spherical Pendulum via Curriculum Reinforcement learning
arXiv
收藏 引用
arXiv 2023年
作者: Klink, Pascal Wolf, Florian Ploeger, Kai Peters, Jan Pajarinen, Joni The Intelligent Autonomous Systems Group the Technical University of Darmstadt Germany The Department of Electrical Engineering and Automation Aalto University Finland The German Research Center for AI Research Department Systems AI for Robot Learning Hessian.AI the Centre of Cognitive Science Germany
Reinforcement learning (RL) allows learning nontrivial robot control laws purely from data. However, many successful applications of RL have relied on ad-hoc regularizations, such as hand-crafted curricula, to regular... 详细信息
来源: 评论
Global Tensor Motion Planning
收藏 引用
IEEE robotics and Automation Letters 2025年 第7期10卷 7302-7309页
作者: An T. Le Kay Pompetzki João Carvalho Joe Watson Julen Urain Armin Biess Georgia Chalvatzaki Jan Peters Intelligent Autonomous Systems Lab TU Darmstadt Darmstadt Germany German Research Center for AI (DFKI) Kaiserslautern Germany Interactive Robot Perception & Learning Lab TU Darmstadt Darmstadt Germany Hessian.AI Darmstadt Germany Centre for Cognitive Science Darmstadt Germany
Batch planning is increasingly necessary to quickly produce diverse and quality motion plans for downstream learning applications, such as distillation and imitation learning. This letter presents Global Tensor Motion... 详细信息
来源: 评论
Safe Reinforcement learning on the Constraint Manifold: Theory and Applications
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Puze Bou-Ammar, Haitham Peters, Jan Tateo, Davide Intelligent Autonomous Systems Group The Technical University of Darmstadt Germany Huawei R&D London United Kingdom Department of Systems AI for Robot Learning German Research Center for AI Germany Hessian Centre for Artificial Intelligence The Centre of Cognitive Science
Integrating learning-based techniques, especially reinforcement learning, into robotics is promising for solving complex problems in unstructured environments. However, most existing approaches are trained in well-tun... 详细信息
来源: 评论
Zero-Shot Transfer of a Tactile-based Continuous Force Control Policy from Simulation to robot
Zero-Shot Transfer of a Tactile-based Continuous Force Contr...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and systems (IROS)
作者: Luca Lach Robert Haschke Davide Tateo Jan Peters Helge Ritter Júlia Borràs Carme Torras Institut de Robòtica i Informàtica Industrial CSIC-UPC Neuroinformatics Group Technical Faculty Bielefeld University Computer Science Department Technical University Darmstadt German Research Center for AI (DFKI) Research Department: Systems AI for Robot Learning Hessian.AI Centre for Cognitive Science
The advent of tactile sensors in robotics has sparked many ideas on how robots can leverage direct contact measurements of their environment interactions to improve manipulation tasks. An important line of research in... 详细信息
来源: 评论
One Policy to Run Them All: an End-to-end learning Approach to Multi-Embodiment Locomotion
arXiv
收藏 引用
arXiv 2024年
作者: Bohlinger, Nico Czechmanowski, Grzegorz Krupka, Maciej Kicki, Piotr Walas, Krzysztof Peters, Jan Tateo, Davide Department of Computer Science Technical University of Darmstadt Germany Institute of Robotics and Machine Intelligence Poznan University of Technology Poland Research Department: Systems AI for Robot Learning Germany IDEAS NCBR Warsaw Poland Hessian.AI Centre for Cognitive Science
Deep Reinforcement learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is... 详细信息
来源: 评论
Adapting Object-Centric Probabilistic Movement Primitives with Residual Reinforcement learning
Adapting Object-Centric Probabilistic Movement Primitives wi...
收藏 引用
IEEE-RAS International Conference on Humanoid robots
作者: João Carvalho Dorothea Koert Marek Daniv Jan Peters Computer Science Department TU Darmstadt (TUDa) Institute for Intelligent Autonomous Systems TUDa Centre for Cognitive Science Research Department: Systems AI for Robot Learning German Research Center for AI (DFKI) Hessian. AI
It is desirable for future robots to quickly learn new tasks and adapt learned skills to constantly changing environments. To this end, Probabilistic Movement Primitives (ProMPs) have shown to be a promising framework... 详细信息
来源: 评论
Safe Reinforcement learning of Dynamic High-Dimensional robotic Tasks: Navigation, Manipulation, Interaction
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Puze Zhang, Kuo Tateo, Davide Jauhri, Snehal Hu, Zhiyuan Peters, Jan Chalvatzaki, Georgia Computer Science Department Technical University Darmstadt Germany Research Department: Systems AI for Robot Learning Germany Hessian.AI Centre for Cognitive Science
Safety is a fundamental property for the real-world deployment of robotic platforms. Any control policy should avoid dangerous actions that could harm the environment, humans, or the robot itself. In reinforcement lea... 详细信息
来源: 评论
DIMINISHING RETURN OF VALUE EXPANSION METHODS IN MODEL-BASED REINFORCEMENT learning
arXiv
收藏 引用
arXiv 2023年
作者: Palenicek, Daniel Lutter, Michael Carvalho, João Peters, Jan Intelligent Autonomous Systems Technical University of Darmstadt Germany Hessian.AI Hochschulstr. 10 Darmstadt64293 Germany Research Department: Systems AI for Robot Learning Germany Centre for Cognitive Science Hochschulstr. 10 Darmstadt64293 Germany
Model-based reinforcement learning is one approach to increase sample efficiency. However, the accuracy of the dynamics model and the resulting compounding error over modelled trajectories are commonly regarded as key... 详细信息
来源: 评论
Placing by Touching: An Empirical Study on the Importance of Tactile Sensing for Precise Object Placing
Placing by Touching: An Empirical Study on the Importance of...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and systems (IROS)
作者: Luca Lach Niklas Funk Robert Haschke Séverin Lemaignan Helge Joachim Ritter Jan Peters Georgia Chalvatzaki Neuroinformatics Group Technical Faculty Bielefeld University Institut de Robòtica i Informatica Industrial CSIC- UPC Computer Science Department Technical University Darmstadt PAL Robotics Research Department: Systems AI for Robot Learning German Research Center for AI (DFKI) Hessian AI Centre for Cognitive Science
This work deals with a practical everyday problem: stable object placement on flat surfaces starting from unknown initial poses. Common object-placing approaches require either complete scene specifications or extrins...
来源: 评论