咨询与建议

限定检索结果

文献类型

  • 92 篇 期刊文献
  • 32 篇 会议
  • 1 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 81 篇 工学
    • 54 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 22 篇 生物工程
    • 12 篇 光学工程
    • 12 篇 生物医学工程(可授...
    • 9 篇 信息与通信工程
    • 6 篇 化学工程与技术
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
  • 56 篇 理学
    • 25 篇 物理学
    • 23 篇 生物学
    • 18 篇 数学
    • 13 篇 化学
    • 12 篇 统计学(可授理学、...
    • 3 篇 地质学
  • 20 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 8 篇 图书情报与档案管...
  • 18 篇 医学
    • 16 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 教育学

主题

  • 7 篇 machine learning
  • 5 篇 deep neural netw...
  • 4 篇 deep learning
  • 3 篇 predictive model...
  • 3 篇 molecular dynami...
  • 2 篇 reinforcement le...
  • 2 篇 electroencephalo...
  • 2 篇 speech enhanceme...
  • 2 篇 data mining
  • 2 篇 noise
  • 2 篇 computational li...
  • 2 篇 computational mo...
  • 2 篇 hearing aids
  • 2 篇 decision making
  • 2 篇 artificial intel...
  • 2 篇 radiotherapy
  • 2 篇 classification (...
  • 2 篇 pattern analysis
  • 2 篇 optical characte...
  • 1 篇 image enhancemen...

机构

  • 12 篇 google research ...
  • 11 篇 machine learning...
  • 8 篇 machine learning...
  • 7 篇 digital philolog...
  • 7 篇 max planck insti...
  • 6 篇 department of ar...
  • 5 篇 faculty of philo...
  • 5 篇 bifold – berlin ...
  • 4 篇 research group d...
  • 4 篇 bifold berlin in...
  • 4 篇 research group d...
  • 4 篇 department of ar...
  • 3 篇 max planck insti...
  • 3 篇 technische unive...
  • 3 篇 university of vi...
  • 3 篇 mdsi – munich da...
  • 3 篇 berlin institute...
  • 3 篇 univie doctoral ...
  • 3 篇 aignostics gmbh
  • 3 篇 berlin institute...

作者

  • 17 篇 müller klaus-rob...
  • 12 篇 roth benjamin
  • 5 篇 unke oliver t.
  • 5 篇 märz luisa
  • 5 篇 ullah ihsan
  • 5 篇 gastegger michae...
  • 5 篇 chmiela stefan
  • 4 篇 çano erion
  • 4 篇 triantafyllopoul...
  • 4 篇 schuller björn w...
  • 4 篇 sauceda huziel e...
  • 3 篇 tsangko iosif
  • 3 篇 tschiatschek seb...
  • 3 篇 schmude timothée
  • 3 篇 klaus-robert mül...
  • 3 篇 schweter stefan
  • 3 篇 kaschesky michae...
  • 3 篇 stephan andreas
  • 3 篇 klauschen freder...
  • 3 篇 koesten laura

语言

  • 118 篇 英文
  • 7 篇 其他
检索条件"机构=Research Group Data Mining and Machine Learning"
125 条 记 录,以下是91-100 订阅
排序:
Detecting and mitigating mode-collapse for flow-based sampling of lattice field theories
收藏 引用
Physical Review D 2023年 第11期108卷 114501-114501页
作者: Kim A. Nicoli Christopher J. Anders Tobias Hartung Karl Jansen Pan Kessel Shinichi Nakajima Transdisciplinary Research Area (TRA) Matter University of Bonn 53115 Bonn Germany Helmholtz Institute for Radiation and Nuclear Physics (HISKP) 53115 Bonn Germany Berlin Institute for the Foundations of Learning and Data (BIFOLD) 10587 Berlin Germany Machine Learning Group Technische Universität Berlin 10587 Berlin Germany Northeastern University—London London E1W 1LP United Kingdom CQTA Deutsches Elektronen-Synchrotron DESY 15738 Zeuthen Germany Prescient Design gRED Roche 2807 Basel Switzerland RIKEN Center for AIP 103-0027 Tokyo Japan
We study the consequences of mode-collapse of normalizing flows in the context of lattice field theory. Normalizing flows allow for independent sampling. For this reason, it is hoped that they can avoid the tunneling ... 详细信息
来源: 评论
SpookyNet: learning force fields with electronic degrees of freedom and nonlocal effects
arXiv
收藏 引用
arXiv 2021年
作者: Unke, Oliver T. Chmiela, Stefan Gastegger, Michael Schütt, Kristof T. Sauceda, Huziel E. Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Berlin10587 Germany Technische Universität Berlin Berlin10623 Germany BASLEARN BASF-TU joint Lab Technische Universität Berlin Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany Google Research Brain team Berlin Germany
machine-learned force fields (ML-FFs) combine the accuracy of ab initio methods with the efficiency of conventional force fields. However, current ML-FFs typically ignore electronic degrees of freedom, such as the tot... 详细信息
来源: 评论
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities
arXiv
收藏 引用
arXiv 2021年
作者: Unke, Oliver T. Bogojeski, Mihail Gastegger, Michael Geiger, Mario Smidt, Tess Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Berlin10587 Germany Technische Universität Berlin Berlin10623 Germany Institute of Physics École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland Computational Research Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany BASLEARN - TU Berlin BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany Google Research Brain Team Berlin Germany
machine learning has enabled the prediction of quantum chemical properties with high accuracy and efficiency, allowing to bypass computationally costly ab initio calculations. Instead of training on a fixed set of pro... 详细信息
来源: 评论
LEVERAGING WEAK COMPLEMENTARY LABELS TO IMPROVE SEMANTIC SEGMENTATION OF HEPATOCELLULAR CARCINOMA AND CHOLANGIOCARCINOMA IN H&E-STAINED SLIDES
arXiv
收藏 引用
arXiv 2023年
作者: Hägele, Miriam Eschrich, Johannes Schallenberg, Simon Guillot, Adrien Ruff, Lukas Roderburg, Christoph Alber, Maximilian Tacke, Frank Klauschen, Frederick Machine Learning Group Technische Universität Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Germany Aignostics GmbH Germany Department of Hepatology and Gastroenterology Charité Universitätsmedizin Berlin Germany Berlin Institute of Health at Charité Universitätsmedizin Berlin Germany Institute of Pathology Charité Universitätsmedizin Berlin Germany Clinic for Gastroenterology Hepatology and Infectious Diseases University Hospital Düsseldorf Germany Institute of Pathology Ludwig-Maximilians-Universität München Germany German Cancer Consortium Munich Partner Site German Cancer Research Center Germany
In this paper, we present a deep learning segmentation approach to classify and quantify the two most prevalent primary liver cancers – hepatocellular carcinoma and intrahepatic cholangiocarcinoma – from hematoxylin... 详细信息
来源: 评论
Traffic4cast at NeurIPS 2021 – Temporal and Spatial Few-Shot Transfer learning in Gridded Geo-Spatial Processes
arXiv
收藏 引用
arXiv 2022年
作者: Eichenberger, Christian Neun, Moritz Martin, Henry Herruzo, Pedro Spanring, Markus Lu, Yichao Choi, Sungbin Konyakhin, Vsevolod Lukashina, Nina Shpilman, Aleksei Wiedemann, Nina Raubal, Martin Wang, Bo Vu, Hai L. Mohajerpoor, Reza Cai, Chen Kim, Inhi Hermes, Luca Melnik, Andrew Velioglu, Riza Vieth, Markus Schilling, Malte Bojesomo, Alabi Al Marzouqi, Hasan Liatsis, Panos Santokhi, Jay Hillier, Dylan Yang, Yiming Sarwar, Joned Jordan, Anna Hewage, Emil Jonietz, David Tang, Fei Gruca, Aleksandra Kopp, Michael Kreil, David Hochreiter, Sepp Vienna Austria Institute of Cartography and Geoinformation ETH Zurich Switzerland Layer 6 AI Toronto Canada ITMO University Saint Petersburg Russia JetBrains Research Saint Petersburg Russia HSE University Saint Petersburg Russia Institute of Transport Studies Monash University ClaytonVIC Australia CSIRO’s Data61 Eveleigh Australia Institute Civil and Environmental Engineering Department Kongju National University Korea Republic of Machine Learning & Neuroinformatics Group Bielefeld University Germany Electrical Engineering and Computer Science Department Khalifa University Abu Dhabi United Arab Emirates Alchera Data Technologies Ltd Cambridge United Kingdom HERE Technologies Zurich Switzerland Silesian University of Technology Gliwice Poland Machine Learning Institute Johannes Kepler University Linz Austria
The IARAI Traffic4cast competitions at NeurIPS 2019 and 2020 showed that neural networks can successfully predict future traffic conditions 1 hour into the future on simply aggregated GPS probe data in time and space ... 详细信息
来源: 评论
Accurate global machine learning force fields for molecules with hundreds of atoms
arXiv
收藏 引用
arXiv 2022年
作者: Chmiela, Stefan Vassilev-Galindo, Valentin Unke, Oliver T. Kabylda, Adil Sauceda, Huziel E. Tkatchenko, Alexandre Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data – BIFOLD Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg Google Research Brain Team Berlin Germany Departamento de Materia Condensada Instituto de Física Universidad Nacional Autónoma de México Cd. de MéxicoC.P. 04510 Mexico BASLEARN - TU Berlin BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of
Global machine learning force fields (MLFFs), that have the capacity to capture collective many-atom interactions in molecular systems, currently only scale up to a few dozen atoms due a considerable growth of the mod... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
Evaluating deep transfer learning for whole-brain cognitive decoding
arXiv
收藏 引用
arXiv 2021年
作者: Thomas, Armin W. Lindenberger, Ulman Samek, Wojciech Müller, Klaus-Robert Machine Learning Group Dept. of Computer Science and Electrical Engineering Technische Universität Berlin Berlin Germany Center for Lifespan Psychology Max Planck Institute for Human Development Berlin Germany Stanford Data Science Stanford University StanfordCA United States Dept. of Psychology Stanford University StanfordCA United States Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin Germany Dept. of Artificial Intelligence Fraunhofer Heinrich Hertz Institute Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Dept. of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institute for Informatics Saarbrücken Germany
research in many fields has shown that transfer learning (TL) is well-suited to improve the performance of deep learning (DL) models in datasets with small numbers of samples. This empirical success has triggered inte... 详细信息
来源: 评论
BIGDML: Towards exact machine learning force fields for materials
arXiv
收藏 引用
arXiv 2021年
作者: Sauceda, Huziel E. Gálvez-González, Luis E. Chmiela, Stefan Paz-Borbón, Lauro Oliver Müller, Klaus-Robert Tkatchenko, Alexandre Machine Learning Group Technische Universität Berlin Berlin10587 Germany BASLEARN TU Berlin BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany División de Ciencias Exactas y Naturales Universidad de Sonora Blvd. Luis Encinas & Rosales Hermosillo Mexico BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20-364 CDMX01000 Mexico Google Research Brain team Berlin Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany Department of Physics and Materials Science University of Luxembourg LuxembourgL-1511 Luxembourg
machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict the... 详细信息
来源: 评论
Scholarly Influence of the Conference and Labs of the Evaluation Forum eHealth Initiative: Review and Bibliometric Study of the 2012 to 2017 Outcomes
收藏 引用
JMIR research Protocols 2018年 第7期7卷 e10961页
作者: Suominen, Hanna Kelly, Liadh Goeuriot, Lorraine Research School of Computer Science College of Engineering and Computer Science The Australian National University Canberra ACT Australia Machine Learning Research Group Data61 Commonwealth Scientific and Industrial Research Organisation Canberra ACT Australia Faculty of Science and Technology University of Canberra Canberra ACT Australia Department of Future Technologies Faculty of Science and Engineering University of Turku Turku Finland Department of Computer Science Maynooth University Maynooth Co Kildare Ireland Grenoble Informatics Laboratory Université Grenoble Alpes Grenoble France
Background: The eHealth initiative of the Conference and Labs of the Evaluation Forum (CLEF) has aimed since 2012 to provide researchers working on health text analytics with annual workshops, shared development chall... 详细信息
来源: 评论