咨询与建议

限定检索结果

文献类型

  • 91 篇 期刊文献
  • 32 篇 会议
  • 1 册 图书

馆藏范围

  • 124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 54 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 22 篇 生物工程
    • 12 篇 光学工程
    • 12 篇 生物医学工程(可授...
    • 9 篇 信息与通信工程
    • 6 篇 化学工程与技术
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
  • 55 篇 理学
    • 25 篇 物理学
    • 23 篇 生物学
    • 18 篇 数学
    • 13 篇 化学
    • 12 篇 统计学(可授理学、...
    • 2 篇 地质学
  • 20 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 8 篇 图书情报与档案管...
  • 18 篇 医学
    • 16 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 教育学

主题

  • 7 篇 machine learning
  • 5 篇 deep neural netw...
  • 4 篇 deep learning
  • 3 篇 predictive model...
  • 3 篇 molecular dynami...
  • 2 篇 reinforcement le...
  • 2 篇 electroencephalo...
  • 2 篇 speech enhanceme...
  • 2 篇 data mining
  • 2 篇 noise
  • 2 篇 computational li...
  • 2 篇 computational mo...
  • 2 篇 hearing aids
  • 2 篇 decision making
  • 2 篇 artificial intel...
  • 2 篇 radiotherapy
  • 2 篇 classification (...
  • 2 篇 pattern analysis
  • 2 篇 optical characte...
  • 1 篇 image enhancemen...

机构

  • 12 篇 google research ...
  • 11 篇 machine learning...
  • 8 篇 machine learning...
  • 7 篇 digital philolog...
  • 7 篇 max planck insti...
  • 6 篇 department of ar...
  • 5 篇 faculty of philo...
  • 5 篇 bifold – berlin ...
  • 4 篇 research group d...
  • 4 篇 bifold berlin in...
  • 4 篇 research group d...
  • 4 篇 department of ar...
  • 3 篇 max planck insti...
  • 3 篇 technische unive...
  • 3 篇 university of vi...
  • 3 篇 mdsi – munich da...
  • 3 篇 berlin institute...
  • 3 篇 univie doctoral ...
  • 3 篇 aignostics gmbh
  • 3 篇 berlin institute...

作者

  • 17 篇 müller klaus-rob...
  • 12 篇 roth benjamin
  • 5 篇 unke oliver t.
  • 5 篇 märz luisa
  • 5 篇 ullah ihsan
  • 5 篇 gastegger michae...
  • 5 篇 chmiela stefan
  • 4 篇 çano erion
  • 4 篇 triantafyllopoul...
  • 4 篇 schuller björn w...
  • 4 篇 sauceda huziel e...
  • 3 篇 tsangko iosif
  • 3 篇 tschiatschek seb...
  • 3 篇 schmude timothée
  • 3 篇 klaus-robert mül...
  • 3 篇 schweter stefan
  • 3 篇 kaschesky michae...
  • 3 篇 stephan andreas
  • 3 篇 klauschen freder...
  • 3 篇 koesten laura

语言

  • 117 篇 英文
  • 7 篇 其他
检索条件"机构=Research Group Data Mining and Machine Learning"
124 条 记 录,以下是121-130 订阅
排序:
Finding latent causes in causal networks: an efficient approach based on Markov blankets  08
Finding latent causes in causal networks: an efficient appro...
收藏 引用
Proceedings of the 22nd International Conference on Neural Information Processing Systems
作者: Jean-Philippe Pellet André Elisseeff Pattern Recognition and Machine Learning Group Swiss Federal Institute of Technology Zurich Zurich Switzerland and Data Analytics Group IBM Research GmbH Rüschlikon Switzerland Data Analytics Group IBM Research GmbH Rüschlikon Switzerland
Causal structure-discovery techniques usually assume that all causes of more than one variable are observed. This is the so-called causal sufficiency assumption. In practice, it is untestable, and often violated. In t... 详细信息
来源: 评论
Comments on: Augmenting the bootstrap to analyze high dimensional genomic data
收藏 引用
TEST 2008年 第1期17卷 31-35页
作者: Boulesteix, Anne-Laure Kondylis, Athanassios Krämer, Nicole Sylvia Lawry Centre for Multiple Sclerosis Research Munich Germany Institute of Statistics University of Neuchâtel Neuchâtel Switzerland Machine Learning/Intelligent Data Analysis Group Technical University of Berlin FR 6–9 Berlin Germany
来源: 评论
Fighting spam with statistics
收藏 引用
Significance 2004年 第2期1卷 69-72页
作者: Goodman, Joshua Heckerman, David Joshua Goodman is a Researcher in the Machine Learning and Applied Statistics Group at Microsoft Research. He has been on loan to Microsoft's Anti-Spam product team since its inception. His previous work was on language modelling (predicting word sequences) and fast algorithms for logistic regression. David Heckerman is founder and manager of the Machine Learning and Applied Statistics Group at Microsoft Research. Since 1992 he has been a Senior Researcher at Microsoft where he has created applications including junk mail filters data mining tools handwriting recognition for the Tablet PC troubleshooters in Windows and the Answer Wizard in Office. His work includes Bayesian methods for learning probabilistic graphical models from data. David received his doctorate from Stanford University in 1990 and is a Fellow of the American Association for Artificial Intelligence.
Spam-unsolicited commercial e-mail-is a complex and growing problem, and threatens to derail the internet revolution. Joshua Goodman and David Heckerman of Microsoft research describe some statistics-based methods for...
来源: 评论
Advances in Self-Organizing Maps, learning Vector Quantization, Clustering and data Visualization  1
收藏 引用
丛书名: Advances in Intelligent Systems and Computing
1000年
作者: Alfredo Vellido Karina Gibert Cecilio Angulo José David Martín Guerrero
来源: 评论