咨询与建议

限定检索结果

文献类型

  • 92 篇 期刊文献
  • 32 篇 会议
  • 1 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 81 篇 工学
    • 54 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 22 篇 生物工程
    • 12 篇 光学工程
    • 12 篇 生物医学工程(可授...
    • 9 篇 信息与通信工程
    • 6 篇 化学工程与技术
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
  • 56 篇 理学
    • 25 篇 物理学
    • 23 篇 生物学
    • 18 篇 数学
    • 13 篇 化学
    • 12 篇 统计学(可授理学、...
    • 3 篇 地质学
  • 20 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 8 篇 图书情报与档案管...
  • 18 篇 医学
    • 16 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 教育学

主题

  • 7 篇 machine learning
  • 5 篇 deep neural netw...
  • 4 篇 deep learning
  • 3 篇 predictive model...
  • 3 篇 molecular dynami...
  • 2 篇 reinforcement le...
  • 2 篇 electroencephalo...
  • 2 篇 speech enhanceme...
  • 2 篇 data mining
  • 2 篇 noise
  • 2 篇 computational li...
  • 2 篇 computational mo...
  • 2 篇 hearing aids
  • 2 篇 decision making
  • 2 篇 artificial intel...
  • 2 篇 radiotherapy
  • 2 篇 classification (...
  • 2 篇 pattern analysis
  • 2 篇 optical characte...
  • 1 篇 image enhancemen...

机构

  • 12 篇 google research ...
  • 11 篇 machine learning...
  • 8 篇 machine learning...
  • 7 篇 digital philolog...
  • 7 篇 max planck insti...
  • 6 篇 department of ar...
  • 5 篇 faculty of philo...
  • 5 篇 bifold – berlin ...
  • 4 篇 research group d...
  • 4 篇 bifold berlin in...
  • 4 篇 research group d...
  • 4 篇 department of ar...
  • 3 篇 max planck insti...
  • 3 篇 technische unive...
  • 3 篇 university of vi...
  • 3 篇 mdsi – munich da...
  • 3 篇 berlin institute...
  • 3 篇 univie doctoral ...
  • 3 篇 aignostics gmbh
  • 3 篇 berlin institute...

作者

  • 17 篇 müller klaus-rob...
  • 12 篇 roth benjamin
  • 5 篇 unke oliver t.
  • 5 篇 märz luisa
  • 5 篇 ullah ihsan
  • 5 篇 gastegger michae...
  • 5 篇 chmiela stefan
  • 4 篇 çano erion
  • 4 篇 triantafyllopoul...
  • 4 篇 schuller björn w...
  • 4 篇 sauceda huziel e...
  • 3 篇 tsangko iosif
  • 3 篇 tschiatschek seb...
  • 3 篇 schmude timothée
  • 3 篇 klaus-robert mül...
  • 3 篇 schweter stefan
  • 3 篇 kaschesky michae...
  • 3 篇 stephan andreas
  • 3 篇 klauschen freder...
  • 3 篇 koesten laura

语言

  • 118 篇 英文
  • 7 篇 其他
检索条件"机构=Research Group Data Mining and Machine Learning"
125 条 记 录,以下是61-70 订阅
排序:
Optimal neural summarization for full-field weak lensing cosmological implicit inference
收藏 引用
Astronomy and Astrophysics 2025年 697卷
作者: Lanzieri, Denise Zeghal, Justine Lucas Makinen, T. Boucaud, Alexandre Starck, Jean-Luc Lanusse, François Université Paris Cité Université Paris-Saclay CEA CNRS AIM Gif-sur-Yvette F-91191 France Université Paris Cité CNRS Paris F-75013 France Imperial Centre for Inference and Cosmology (ICIC) & Astrophysics Group Imperial College London Blackett Laboratory Prince Consort Road London SW7 2AZ United Kingdom Université Paris-Saclay Université Paris Cité CEA CNRS AIM Gif-sur-Yvette 91191 France Sony Computer Science Laboratories - Rome Joint Initiative CREF-SONY Centro Ricerche Enrico Fermi Via Panisperna 89/A Rome 00184 Italy Institutes of Computer Science and Astrophysics Foundation for Research and Technology Hellas (FORTH) Heraklion 70013 Greece Center for Computational Astrophysics Flatiron Institute 162 5th Ave New York 10010 NY United States Department of Physics Université de Montréal Montréal H2V 0B3 Canada Mila - Quebec Artificial Intelligence Institute Montréal H2S 3H1 Canada Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal H2V 0B3 Canada
Context. Traditionally, weak lensing cosmological surveys have been analyzed using summary statistics that were either motivated by their analytically tractable likelihoods (e.g., power spectrum) or by their ability t... 详细信息
来源: 评论
Towards robust explanations for deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Dombrowski, Ann-Kathrin Anders, Christopher J. Müller, Klaus-Robert Kessel, Pan Machine Learning Group Technische Universität Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institute for Informatics Saarbrücken Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany Google Research Brain team Berlin Germany
Explanation methods shed light on the decision process of black-box classifiers such as deep neural networks. But their usefulness can be compromised because they are susceptible to manipulations. With this work, we a... 详细信息
来源: 评论
Transferring Traffic Predictions to Urban Regions Without Target data
Transferring Traffic Predictions to Urban Regions Without Ta...
收藏 引用
International Conference on Intelligent Transportation
作者: Stefan Schestakov Simon Gottschalk Nicolas Tempelmeier Thorben Funke Elena Demidova L3S Research Center Leibniz University Hannover Hannover Germany Volkswagen AG Commercial Vehicles Hannover Germany Data Science & Intelligent Systems (DSIS) Research Group University of Bonn and Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany
The scarcity of spatiotemporal traffic data for many urban regions significantly limits the availability of location-specific predictive models for traffic management, mobility services, and road safety. For example, ... 详细信息
来源: 评论
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
arXiv
收藏 引用
arXiv 2022年
作者: Frank, J. Thorben Unke, Oliver T. Müller, Klaus-Robert Machine Learning Group TU Berlin Berlin10587 Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Germany Google Research Brain team Berlin Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institut für Informatik Saarbrücken66123 Germany
The application of machine learning methods in quantum chemistry has enabled the study of numerous chemical phenomena, which are computationally intractable with traditional ab-initio methods. However, some quantum me... 详细信息
来源: 评论
learning Trivializing Gradient Flows for Lattice Gauge Theories
arXiv
收藏 引用
arXiv 2022年
作者: Bacchio, Simone Kessel, Pan Schaefer, Stefan Vaitl, Lorenz Computation-based Science and Technology Research Center The Cyprus Institute Nicosia Cyprus Machine Learning Group Technische Universität Berlin Berlin Germany BIFOLD—Berlin Institute for the Foundations of Learning and Data Berlin Germany John Von Neumann-Institut für Computing NIC Deutsches Elektronen-Synchrotron DESY Germany
We propose a unifying approach that starts from the perturbative construction of trivializing maps by Lüscher and then improves on it by learning. The resulting continuous normalizing flow model can be implemente... 详细信息
来源: 评论
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
RecycleNet: Latent Feature Recycling Leads to Iterative Deci...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Gregor Koehler Tassilo Wald Constantin Ulrich David Zimmerer Paul F. Jaeger Jörg K. H. Franke Simon Kohl Fabian Isensee Klaus H. Maier-Hein Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Information and Data Science School for Health Karlsruhe/Heidelberg Germany Helmholtz Imaging DKFZ National Center for Tumor Diseases (NCT) NCT Heidelberg a Partnership Between DKFZ University Medical Center Heidelberg Interactive Machine Learning Group DKFZ Machine Learning Lab University of Freiburg Freiburg Germany Latent Labs (***) London UK Applied Computer Vision Lab DKFZ Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu...
来源: 评论
Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network research
arXiv
收藏 引用
arXiv 2024年
作者: Hille, Tobias Stubbemann, Maximilian Hanika, Tom Knowledge & Data Engineering Group University of Kassel Kassel Germany Interdisciplinary Research Center for Information System Design University of Kassel Kassel Germany Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany Institute of Computer Science University of Hildesheim Hildesheim Germany
Difficulties in replication and reproducibility of empirical evidences in machine learning research have become a prominent topic in recent years. Ensuring that machine learning research results are sound and reliable... 详细信息
来源: 评论
Reconstructing Kernel-based machine learning Force Fields with Super-linear Convergence
arXiv
收藏 引用
arXiv 2022年
作者: Blücher, Stefan Müller, Klaus-Robert Chmiela, Stefan BIFOLD Berlin Institue for the Foundations of Learning and Data Berlin10587 Germany Technische Universität Berlin Machine Learning Group Berlin10587 Germany Korea University Department of Artificial Intelligence Seoul136-713 Korea Republic of Max Planck Institute for Informatics Saarbrücken66123 Germany Google Research Brain team Berlin Germany
Kernel machines have sustained continuous progress in the field of quantum chemistry. In particular, they have proven to be successful in the low-data regime of force field reconstruction. This is because many equivar... 详细信息
来源: 评论
RBGNet: Ray-based grouping for 3D Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Haiyang Shi, Shaoshuai Yang, Ze Fang, Rongyao Qian, Qi Li, Hongsheng Schiele, Bernt Wang, Liwei Center for Data Science Peking University China Max Planck Institute for Informatics Germany University of Toronto Canada The Chinese University of Hong Kong Hong Kong Alibaba Group China Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University China International Center for Machine Learning Research Peking University China
As a fundamental problem in computer vision, 3D object detection is experiencing rapid growth. To extract the point-wise features from the irregularly and sparsely distributed points, previous methods usually take a f... 详细信息
来源: 评论
Analyzing the Structure of Attention in a Transformer Language Model
arXiv
收藏 引用
arXiv 2019年
作者: Vig, Jesse Belinkov, Yonatan Palo Alto Research Center Machine Learning and Data Science Group Interaction and Analytics Lab Palo AltoCA United States Harvard John A. Paulson School of Engineering and Applied Sciences MIT Computer Science and Artificial Intelligence Laboratory CambridgeMA United States
The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks. In this paper, we analyze the structure of attention in a Transforme... 详细信息
来源: 评论