咨询与建议

限定检索结果

文献类型

  • 92 篇 期刊文献
  • 32 篇 会议
  • 1 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 81 篇 工学
    • 54 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 22 篇 生物工程
    • 12 篇 光学工程
    • 12 篇 生物医学工程(可授...
    • 9 篇 信息与通信工程
    • 6 篇 化学工程与技术
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
  • 56 篇 理学
    • 25 篇 物理学
    • 23 篇 生物学
    • 18 篇 数学
    • 13 篇 化学
    • 12 篇 统计学(可授理学、...
    • 3 篇 地质学
  • 20 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 8 篇 图书情报与档案管...
  • 18 篇 医学
    • 16 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 教育学

主题

  • 7 篇 machine learning
  • 5 篇 deep neural netw...
  • 4 篇 deep learning
  • 3 篇 predictive model...
  • 3 篇 molecular dynami...
  • 2 篇 reinforcement le...
  • 2 篇 electroencephalo...
  • 2 篇 speech enhanceme...
  • 2 篇 data mining
  • 2 篇 noise
  • 2 篇 computational li...
  • 2 篇 computational mo...
  • 2 篇 hearing aids
  • 2 篇 decision making
  • 2 篇 artificial intel...
  • 2 篇 radiotherapy
  • 2 篇 classification (...
  • 2 篇 pattern analysis
  • 2 篇 optical characte...
  • 1 篇 image enhancemen...

机构

  • 12 篇 google research ...
  • 11 篇 machine learning...
  • 8 篇 machine learning...
  • 7 篇 digital philolog...
  • 7 篇 max planck insti...
  • 6 篇 department of ar...
  • 5 篇 faculty of philo...
  • 5 篇 bifold – berlin ...
  • 4 篇 research group d...
  • 4 篇 bifold berlin in...
  • 4 篇 research group d...
  • 4 篇 department of ar...
  • 3 篇 max planck insti...
  • 3 篇 technische unive...
  • 3 篇 university of vi...
  • 3 篇 mdsi – munich da...
  • 3 篇 berlin institute...
  • 3 篇 univie doctoral ...
  • 3 篇 aignostics gmbh
  • 3 篇 berlin institute...

作者

  • 17 篇 müller klaus-rob...
  • 12 篇 roth benjamin
  • 5 篇 unke oliver t.
  • 5 篇 märz luisa
  • 5 篇 ullah ihsan
  • 5 篇 gastegger michae...
  • 5 篇 chmiela stefan
  • 4 篇 çano erion
  • 4 篇 triantafyllopoul...
  • 4 篇 schuller björn w...
  • 4 篇 sauceda huziel e...
  • 3 篇 tsangko iosif
  • 3 篇 tschiatschek seb...
  • 3 篇 schmude timothée
  • 3 篇 klaus-robert mül...
  • 3 篇 schweter stefan
  • 3 篇 kaschesky michae...
  • 3 篇 stephan andreas
  • 3 篇 klauschen freder...
  • 3 篇 koesten laura

语言

  • 118 篇 英文
  • 7 篇 其他
检索条件"机构=Research Group Data Mining and Machine Learning"
125 条 记 录,以下是81-90 订阅
排序:
S$^\text{3}$Attention: Improving Long Sequence Attention With Smoothed Skeleton Sketching
收藏 引用
IEEE Journal of Selected Topics in Signal Processing 2024年 第6期18卷 985-996页
作者: Xue Wang Tian Zhou Jianqing Zhu Jialin Liu Kun Yuan Tao Yao Wotao Yin Rong Jin HanQin Cai Alibaba Group Bellevue WA USA Computer Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology Thuwal Saudi Arabia Department of Statistics and Data Science University of Central Florida Orlando FL USA Center for Machine Learning Research Peking University Beijing China Antai College of Economics and Management Shanghai Jiao Tong University Shanghai China Meta Menlo Park CA USA Department of Statistics and Data Science and the Department of Computer Science University of Central Florida Orlando FL USA
Attention based models have achieved many remarkable breakthroughs in numerous applications. However, the quadratic complexity of Attention makes the vanilla Attention based models hard to apply to long sequence tasks... 详细信息
来源: 评论
COMPUTER AUDITION: FROM TASK-SPECIFIC machine learning TO FOUNDATION MODELS
arXiv
收藏 引用
arXiv 2024年
作者: Triantafyllopoulos, Andreas Tsangko, Iosif Gebhard, Alexander Mesaros, Annamaria Virtanen, Tuomas Schuller, Björn W. CHI – Chair of Health Informatics Technical University of Munich MRI Munich Germany Audio Research Group Tampere University Tampere Finland EIHW – Chair of Embedded Intelligence for Health Care and Wellbeing University of Augsburg Augsburg Germany GLAM – Group on Language Audio & Music Imperial College London United Kingdom MCML – Munich Center for Machine Learning Munich Germany MDSI – Munich Data Science Institute Munich Germany
Foundation models (FMs) are increasingly spearheading recent advances on a variety of tasks that fall under the purview of computer audition – the use of machines to understand sounds. They feature several advantages... 详细信息
来源: 评论
Predicting High School Students' Academic Performance: A Comparative Study of Supervised machine learning Techniques
Predicting High School Students' Academic Performance: A Com...
收藏 引用
machine learning-Driven Digital Technologies for Educational Innovation Workshop
作者: Nadia N. Sánchez-Pozo Juan S. Mejía-Ordóñez Diana C. Chamorro Dagoberto Mayorca-Torres Diego H. Peluffo-Ordóñez Machine learning Research Program SDAS Research Group Ben Guerir Morocco Carrera de Ingeniería Química Faculted de Ciencias Químicas y de la Salud Universidad Técnica de Machala Machala Ecuador Programa de Mecatrónica Facultad de Ingeniería Universidad Mariana Pasto Colombia Modeling Simulation and Data Analysis (MSDA) Research Program Mohamed VI Polytechnique University Ben Guerir Morocco
The proliferation of mobile devices and the rapid development of information and communication technologies have revolutionized education. Educational data has evolved to be voluminously massive, broadly various, and ... 详细信息
来源: 评论
Improving Generative Model-based Unfolding with Schrödinger Bridges
arXiv
收藏 引用
arXiv 2023年
作者: Diefenbacher, Sascha Liu, Guan-Horng Mikuni, Vinicius Nachman, Benjamin Nie, Weili Physics Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Autonomous Control and Decision Systems Laboratory Georgia Institute of Technology AtlantaGA30332 United States National Energy Research Scientific Computing Center Berkeley Lab BerkeleyCA94720 United States Berkeley Institute for Data Science University of California BerkeleyCA94720 United States Machine Learning Research Group NVIDIA Research United States
machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area: one based on discriminative models and one ba... 详细信息
来源: 评论
Accurate machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
arXiv
收藏 引用
arXiv 2022年
作者: Unke, Oliver T. Stöhr, Martin Ganscha, Stefan Unterthiner, Thomas Maennel, Hartmut Kashubin, Sergii Ahlin, Daniel Gastegger, Michael Sandonas, Leonardo Medrano Tkatchenko, Alexandre Müller, Klaus-Robert Google Research Brain Team Machine Learning Group Technische Universität Berlin Berlin10587 Germany Technische Universität Berlin Berlin10623 Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg BASLEARN TU Berlin Berlin10587 Germany BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes. Accurate MD simulations require computationally demanding quantum-mechanical calculations, being practically limited... 详细信息
来源: 评论
Layerwise learning for quantum neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Skolik, Andrea McClean, Jarrod R. Mohseni, Masoud van der Smagt, Patrick Leib, Martin Volkswagen Data:Lab Ungererstraße 69 Munich80805 Germany Ludwig Maximilian University Theresienstraße 39 Munich80333 Germany Leiden University Niels Bohrweg 1 Leiden2333 CA Netherlands Google Research 340 Main Street VeniceCA90291 United States Volkswagen Group Machine Learning Research Lab Munich Germany Eötvös Loránd University Budapest Hungary
With the increased focus on quantum circuit learning for near-term applications on quantum devices, in conjunction with unique challenges presented by cost function landscapes of parametrized quantum circuits, strateg... 详细信息
来源: 评论
Heat flux for semilocal machine-learning potentials
收藏 引用
Physical Review B 2023年 第10期108卷 L100302-L100302页
作者: Marcel F. Langer Florian Knoop Christian Carbogno Matthias Scheffler Matthias Rupp Machine Learning Group Technische Universität Berlin 10587 Berlin Germany Berlin Institute for the Foundations of Learning and Data 10623 Berlin Germany The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS Adlershof of the Humboldt Universität zu Berlin 14195 Berlin Germany Theoretical Physics Division Department of Physics Chemistry and Biology (IFM) Linköping University 581 83 Linköping Sweden Department of Computer and Information Science University of Konstanz 78464 Konstanz Germany Materials Research and Technology Department Luxembourg Institute of Science and Technology Belvaux Luxembourg
The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However, it requires an accurate description of the potential-energy surface and carefully converged statistics. machine-... 详细信息
来源: 评论
xMIL: Insightful Explanations for Multiple Instance learning in Histopathology
arXiv
收藏 引用
arXiv 2024年
作者: Hense, Julius Idaji, Mina Jamshidi Eberle, Oliver Schnake, Thomas Dippel, Jonas Ciernik, Laure Buchstab, Oliver Mock, Andreas Klauschen, Frederick Müller, Klaus-Robert Berlin Institute for the Foundations of Learning and Data Berlin Germany Machine Learning Group Technische Universität Berlin Berlin Germany Aignostics GmbH Berlin Germany Institute of Pathology Ludwig Maximilian University Munich Germany German Cancer Research Center Heidelberg Germany German Cancer Consortium Munich Germany Institute of Pathology Charité Universitätsmedizin Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max-Planck Institute for Informatics Saarbrücken Germany
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker... 详细信息
来源: 评论
DORA: Exploring Outlier Representations in Deep Neural Networks
arXiv
收藏 引用
arXiv 2022年
作者: Bykov, Kirill Deb, Mayukh Grinwald, Dennis Müller, Klaus-Robert Höhne, Marina M.-C. Potsdam Germany Technical University of Berlin Berlin Germany Machine Learning Group Technical University of Berlin Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institut für Informatik Saarbrücken66123 Germany Google Research Brain Team Berlin Germany Department of Computer Science University of Potsdam Germany Department of Physics and Technology UiT Arctic University of Norway Norway
Deep Neural Networks (DNNs) excel at learning complex abstractions within their internal representations. However, the concepts they learn remain opaque, a problem that becomes particularly acute when models unintenti... 详细信息
来源: 评论
Robust and Fast Measure of Information via Low-rank Representation
arXiv
收藏 引用
arXiv 2022年
作者: Dong, Yuxin Gong, Tieliang Yu, Shujian Chen, Hong Li, Chen School of Computer Science and Technology Xi’an Jiaotong University Xi’an710049 China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Ministry of Education Xi’an710049 China Machine Learning Group UiT - The Arctic University of Norway Norway College of Science Huazhong Agriculture University Wuhan430070 China Engineering Research Center of Intelligent Technology for Agriculture Ministry of Education Wuhan430070 China
The matrix-based Rényi’s entropy allows us to directly quantify information measures from given data, without explicit estimation of the underlying probability distribution. This intriguing property makes it wid... 详细信息
来源: 评论