Today cardiovascular diseases have been posing a serious threat to human lives all over the world. Various automated decision-making systems have been proposed by the researchers to help cardiologists to diagnose hear...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have be...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have been developed to tackle these ***,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional *** fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within *** traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of *** selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)*** this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious *** classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable *** the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive *** experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different *** outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%*** results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.
In this work, a free-space optical (FSO) communication system with the integration of mode division multiplexing and circular polarization shift keying (CpolSK) is proposed at 2 × 40 Gbps using LG00 and LG01 mode...
详细信息
Video question answering(VideoQA) is a challenging yet important task that requires a joint understanding of low-level video content and high-level textual semantics. Despite the promising progress of existing efforts...
详细信息
Video question answering(VideoQA) is a challenging yet important task that requires a joint understanding of low-level video content and high-level textual semantics. Despite the promising progress of existing efforts, recent studies revealed that current VideoQA models mostly tend to over-rely on the superficial correlations rooted in the dataset bias while overlooking the key video content, thus leading to unreliable results. Effectively understanding and modeling the temporal and semantic characteristics of a given video for robust VideoQA is crucial but, to our knowledge, has not been well investigated. To fill the research gap, we propose a robust VideoQA framework that can effectively model the cross-modality fusion and enforce the model to focus on the temporal and global content of videos when making a QA decision instead of exploiting the shortcuts in datasets. Specifically, we design a self-supervised contrastive learning objective to contrast the positive and negative pairs of multimodal input, where the fused representation of the original multimodal input is enforced to be closer to that of the intervened input based on video perturbation. We expect the fused representation to focus more on the global context of videos rather than some static keyframes. Moreover, we introduce an effective temporal order regularization to enforce the inherent sequential structure of videos for video representation. We also design a Kullback-Leibler divergence-based perturbation invariance regularization of the predicted answer distribution to improve the robustness of the model against temporal content perturbation of videos. Our method is model-agnostic and can be easily compatible with various VideoQA backbones. Extensive experimental results and analyses on several public datasets show the advantage of our method over the state-of-the-art methods in terms of both accuracy and robustness.
Sulfide solid electrolytes(SEs)have attracted ever-increasing attention due to their superior roomtemperature ionic conductivity(~10^(-2) S cm^(-1)).Additionally,the integration of sulfide SEs and highvoltage cathodes...
详细信息
Sulfide solid electrolytes(SEs)have attracted ever-increasing attention due to their superior roomtemperature ionic conductivity(~10^(-2) S cm^(-1)).Additionally,the integration of sulfide SEs and highvoltage cathodes is promising to achieve higher energy ***,the incompatible interfaces between sulfide SEs and high-voltage cathodes have been one of the key factors limiting their ***,this review presents a critical summarization of the interfacial issues in all-solid-state lithium batteries based on sulfide SEs and high-voltage cathodes and proposes strategies to stabilize the electrolyte/cathode ***,the future research direction of electrolyte/cathode interfaces and application prospects of powder technology in sulfide-based ASSLBs were also discussed.
In an Internet of Things (IoT) assisted Wireless Sensor Network (WSN), the location of the Base Station (BS) remains important. BS serves as the central hub for data collection, aggregation and communication within th...
详细信息
The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial *** radiation cost and quality factor of the antenna are influenced by the size of the *** antennas allow for the ...
详细信息
The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial *** radiation cost and quality factor of the antenna are influenced by the size of the *** antennas allow for the circumvention of the bandwidth restriction for small *** parameters have recently been predicted using machine learning algorithms in existing *** learning can take the place of the manual process of experimenting to find the ideal simulated antenna *** accuracy of the prediction will be primarily dependent on the model that is *** this paper,a novel method for forecasting the bandwidth of the metamaterial antenna is proposed,based on using the Pearson Kernel as a standard *** with these new approaches,this paper suggests a unique hypersphere-based normalization to normalize the values of the dataset attributes and a dimensionality reduction method based on the Pearson kernel to reduce the dimension.A novel algorithm for optimizing the parameters of Convolutional Neural Network(CNN)based on improved Bat Algorithm-based Optimization with Pearson Mutation(BAO-PM)is also presented in this *** prediction results of the proposed work are better when compared to the existing models in the literature.
The primary objective of fog computing is to minimize the reliance of IoT devices on the cloud by leveraging the resources of fog network. Typically, IoT devices offload computation tasks to fog to meet different task...
详细信息
The primary objective of fog computing is to minimize the reliance of IoT devices on the cloud by leveraging the resources of fog network. Typically, IoT devices offload computation tasks to fog to meet different task requirements such as latency in task execution, computation costs, etc. So, selecting such a fog node that meets task requirements is a crucial challenge. To choose an optimal fog node, access to each node's resource availability information is essential. Existing approaches often assume state availability or depend on a subset of state information to design mechanisms tailored to different task requirements. In this paper, OptiFog: a cluster-based fog computing architecture for acquiring the state information followed by optimal fog node selection and task offloading mechanism is proposed. Additionally, a continuous time Markov chain based stochastic model for predicting the resource availability on fog nodes is proposed. This model prevents the need to frequently synchronize the resource availability status of fog nodes, and allows to maintain an updated state information. Extensive simulation results show that OptiFog lowers task execution latency considerably, and schedules almost all the tasks at the fog layer compared to the existing state-of-the-art. IEEE
A physics-informed neural network (PINN) uses physics-Augmented loss functions, e.g., incorporating the residual term from governing partial differential equations (PDEs), to ensure its output is consistent with funda...
详细信息
A physics-informed neural network (PINN) uses physics-Augmented loss functions, e.g., incorporating the residual term from governing partial differential equations (PDEs), to ensure its output is consistent with fundamental physics laws. However, it turns out to be difficult to train an accurate PINN model for many problems in practice. In this article, we present a novel perspective of the merits of learning in sinusoidal spaces with PINNs. By analyzing behavior at model initialization, we first show that a PINN of increasing expressiveness induces an initial bias around flat output functions. Notably, this initial solution can be very close to satisfying many physics PDEs, i.e., falling into a localminimum of the PINN loss that onlyminimizes PDE residuals, while still being far from the true solution that jointly minimizes PDE residuals and the initial and/or boundary conditions. It is difficult for gradient descent optimization to escape from such a local minimum trap, often causing the training to stall. We then prove that the sinusoidalmapping of inputs-in an architecture we label as sf-PINN-is effective to increase input gradient variability, thus avoiding being trapped in such deceptive local minimum. The level of variability can be effectively modulated to match high-frequency patterns in the problem at hand. A key facet of this article is the comprehensive empirical study that demonstrates the efficacy of learning in sinusoidal spaces with PINNs for a wide range of forward and inversemodeling problems spanning multiple physics domains. Impact Statement-Falling under the emerging field of physicsinformed machine learning, PINN models have tremendous potential as a unifying AI framework for assimilating physics theory and measurement data. However, they remain infeasible for broad science and engineering applications due to computational cost and training challenges, especially for more complex problems. Instead of focusing on empirical demonstration of appli
Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual ***,the current state of this technology is still in its infancy and largely reliant on liquid cr...
详细信息
Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual ***,the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural ***,we present a multicolor nanofilter consisting of multilayered‘active’plasmonic nanocomposites,wherein metallic nanoparticles are embedded within a conductive polymer *** nanocomposites are fabricated with a total thickness below 100 nm using a‘lithography-free’method at the wafer level,and they inherently exhibit three prominent optical modes,accompanying scattering phenomena that produce distinct dichroic reflection and transmission ***,a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed,encompassing the entire visible ***,this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum(3250 K-6250 K).This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun’s elevation and prevailing weather conditions.
暂无评论