Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by challenges in social interaction, communication difficulties, repetitive behaviors, and a range of strengths and differences in...
详细信息
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by challenges in social interaction, communication difficulties, repetitive behaviors, and a range of strengths and differences in cognitive abilities. Early ASD diagnosis using machine learning and deep learning techniques is crucial for preventing its severity and long-term effects. The articles published in this area have only applied different machine learning algorithms, and a notable gap observed is the absence of an in-depth analysis in terms of hyperparameter tuning and the type of dataset used in this context. This study investigated predictive modeling for ASD traits by leveraging two distinct datasets: (i) a raw CSV dataset with tabular data and (ii) an image dataset with facial expression. This study aims to conduct an in-depth analysis of ASD trait prediction in adults and toddlers by doing hyper optimized and interpreting the result through explainable AI. In the CSV dataset, a comprehensive exploration of machine learning and deep learning algorithms, including decision trees, Naive Bayes, random forests, support vector machines (SVM), k-nearest neighbors (KNN), logistic regression, XGBoost, and ANN, was conducted. XGBoost emerged as the most effective machine learning algorithm, achieving an accuracy of 96.13%. The deep learning ANN model outperformed the traditional machine learning algorithms with an accuracy of 99%. Additionally, an ensemble model combining a decision tree, random forest, SVM, KNN, and logistic regression demonstrated superior performance, yielding an accuracy of 96.67%. The XGBoost model, utilized in hyperparameter optimization for CSV data, exhibited a substantial accuracy increase, reaching 98%. For the image dataset, advanced deep learning models, such as ResNet50, VGG16, Boosting, and Bagging, were employed. The bagging model outperformed the others, achieving an impressive accuracy of 99%. Subsequent hyperparameter optimization was conduct
Understanding and predicting air quality is pivotal for public health and environmental management, especially in urban areas like Delhi. This study utilizes a comprehensive dataset from the Central Pollution Control ...
详细信息
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data *** paper focuses on secure vehicular data communications in the Named Data Networking(NDN).I...
详细信息
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data *** paper focuses on secure vehicular data communications in the Named Data Networking(NDN).In NDN,names,provider IDs and data are transmitted in plaintext,which exposes vehicular data to security threats and leads to considerable data communication costs and failure *** paper proposes a Secure vehicular Data Communication(SDC)approach in NDN to supress data communication costs and failure *** constructs a vehicular backbone to reduce the number of authenticated nodes involved in reverse *** the ciphtertext of the name and data is included in the signed Interest and Data and transmitted along the backbone,so the secure data communications are *** is evaluated,and the data results demonstrate that SCD achieves the above objectives.
Freezing of gait (FoG) refers to sudden, relatively brief episodes of gait arrest in Parkinson’s disease, known to manifest in the advanced stages of the condition. Events of freezing are associated with tumbles, tra...
详细信息
A new stochastic coordinate descent deep learning architectures optimization is proposed for Automated Diabetic Retinopathy Detection and Classification from different data sets and convolution networks. Initially, th...
详细信息
Timely estimation of earthquake magnitude plays a crucial role in the early warning systems for earthquakes. Despite the inherent danger associated with earthquake energy, earthquake research necessitates extensive pa...
详细信息
research on panicle detection is one of the most important aspects of paddy phenotypic analysis.A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based ***,it entails man...
详细信息
research on panicle detection is one of the most important aspects of paddy phenotypic analysis.A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based ***,it entails many other challenges,including different illuminations,panicle sizes,shape distortions,partial occlusions,and complex *** detection algorithms are directly affected by these *** work proposes a model for detecting panicles called Border Sensitive Knowledge Distillation(BSKD).It is designed to prioritize the preservation of knowledge in border areas through the use of feature *** feature-based knowledge distillation method allows us to compress the model without sacrificing its *** imitation mask is used to distinguish panicle-related foreground features from irrelevant background features.A significant improvement in Unmanned Aerial Vehicle(UAV)images is achieved when students imitate the teacher’s *** the UAV rice imagery dataset,the proposed BSKD model shows superior performance with 76.3%mAP,88.3%precision,90.1%recall and 92.6%F1 score.
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in o...
详细信息
Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in order to prolong network lifetime;owing to resource-constrained nature of *** fundamental requirement of any network is routing a packet from its source to *** of a routing algorithm depends on the number of network parameters utilized by that routing *** the recent years,various routing protocol has been developed for the delay tolerant networks(DTN).A routing protocol known as spray and wait(SnW)is one of the most widely used routing algorithms for *** this paper,we study the SnW routing protocol and propose a modified version of it referred to as Pentago SnW which is based on pentagonal number *** to binary SnW shows promising results through simulation using real-life scenarios of cars and pedestrians randomly moving on a map.
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...
详细信息
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two sta
暂无评论