Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance b...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance but suffer from error accumulation problems caused by mistakenly disambiguated instances. Although co-training can alleviate this issue by training two networks simultaneously and allowing them to interact with each other, most existing co-training methods train two structurally identical networks with the same task, i.e., are symmetric, rendering it insufficient for them to correct each other due to their similar limitations. Therefore, in this paper, we propose an asymmetric dual-task co-training PLL model called AsyCo,which forces its two networks, i.e., a disambiguation network and an auxiliary network, to learn from different views explicitly by optimizing distinct tasks. Specifically, the disambiguation network is trained with a self-training PLL task to learn label confidence, while the auxiliary network is trained in a supervised learning paradigm to learn from the noisy pairwise similarity labels that are constructed according to the learned label confidence. Finally, the error accumulation problem is mitigated via information distillation and confidence refinement. Extensive experiments on both uniform and instance-dependent partially labeled datasets demonstrate the effectiveness of AsyCo.
The precise detection and measurement of dopamine(DA),a crucial neurotransmitter in the human body,plays a significant role in diagnosing,preventing,and treating neurological diseases associated with its levels.A hi...
详细信息
The precise detection and measurement of dopamine(DA),a crucial neurotransmitter in the human body,plays a significant role in diagnosing,preventing,and treating neurological diseases associated with its levels.A highly sensitive DA electrochemical sensor was constructed by combining molybdenum disulfide quantum dots(MSQDs) with multiwalled carbon nanotubes(MWCNTs).The MSQDs were synthesized using the shear exfoliation *** sensors consist of MSQDs with Mo-S edge catalytic centers for the DA redox reaction,and MWCNTs amplify the sensor *** linearity of the sensor for the detection of DA was tested in the presence of ascorbic acid(AA,50 μmol·L-1) and uric acid(UA,200 μmol·L-1),and exhibited linearity from 2 to 966 μmol·L-1of DA with 0.097 μA(mol·L-1)-1sensitivity and a low limit of detection of0.6 μmol·L-1(the ratio between signal and noise,S/N=3).Moreover,the sensitivity and selectivity of the sensor were also studied using *** is no increase in amperometric current after adding the most potentially interfering *** sensor was successfully applied to recover DA in human blood sera ***,machine learning algorithms were operated to aid in the near-precise detection of DA in the heterogeneous mixture containing AA and *** algorithms facilitate the identification and quantification of DA amidst coexisting interferents,including AA,that are commonly present in biological matrices.
The increasing global incidence of glioma tumors has raised significant healthcare concerns due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical imaging and invasive b...
详细信息
Challenged networks (CNs) contain resource-constrained nodes deployed in regions where human intervention is difficult. Opportunistic networks (OppNets) are CNs with no predefined source-to-destination paths. Due to t...
详细信息
In mountainous regions, bamboo has gained popularity as a local reinforcement material for concrete due to its availability and cost-effectiveness. However, the lack of standardized design guidelines complicates the a...
详细信息
Advancements in digital technologies make it easy to modify the content of digital images. Hence, ensuring digital images' integrity and authenticity is necessary to protect them against various attacks that manip...
详细信息
Traffic rerouting is a technique used to optimize traffic flow and reduce congestion by redirecting vehicles to alternate routes. The work done in this research focuses on a specific case scenario covering a 25 k...
详细信息
Artificial intelligence (AI) has emerged as a powerful tool in computational biology, where it is being used to analyze large datasets to detect difficult biological patterns. This has enabled the design of new drug m...
详细信息
In this paper,a reasoning enhancement method based on RGCN(Relational Graph Convolutional Network)is proposed to improve the detection capability of UAV(Unmanned Aerial Vehicle)on fast-moving military targets in urban...
详细信息
In this paper,a reasoning enhancement method based on RGCN(Relational Graph Convolutional Network)is proposed to improve the detection capability of UAV(Unmanned Aerial Vehicle)on fast-moving military targets in urban battlefield *** combining military images with the publicly available VisDrone2019 dataset,a new dataset called VisMilitary was built and multiple YOLO(You Only Look Once)models were tested on *** to the low confidence problem caused by fuzzy targets,the performance of traditional YOLO models on real battlefield images decreases ***,we propose an improved RGCN inference model,which improves the performance of the model in complex environments by optimizing the data processing and graph network *** results show that the proposed method achieves an improvement of 0.4%to 1.7%on mAP@0.50,which proves the effectiveness of the model in military target *** research of this paper provides a new technical path for UAV target detection in urban battlefield,and provides important enlightenment for the application of deep learning in military field.
Human activity recognition (HAR) techniques pick out and interpret human behaviors and actions by analyzing data gathered from various sensor devices. HAR aims to recognize and automatically categorize human activitie...
详细信息
暂无评论