咨询与建议

限定检索结果

文献类型

  • 385 篇 会议
  • 298 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 689 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 502 篇 工学
    • 287 篇 计算机科学与技术...
    • 243 篇 软件工程
    • 119 篇 信息与通信工程
    • 88 篇 光学工程
    • 56 篇 电子科学与技术(可...
    • 53 篇 控制科学与工程
    • 51 篇 生物工程
    • 50 篇 机械工程
    • 47 篇 电气工程
    • 46 篇 生物医学工程(可授...
    • 34 篇 化学工程与技术
    • 31 篇 仪器科学与技术
    • 20 篇 航空宇航科学与技...
    • 19 篇 材料科学与工程(可...
    • 17 篇 交通运输工程
    • 14 篇 土木工程
    • 12 篇 建筑学
  • 281 篇 理学
    • 137 篇 数学
    • 103 篇 物理学
    • 61 篇 生物学
    • 42 篇 统计学(可授理学、...
    • 35 篇 化学
    • 19 篇 系统科学
  • 120 篇 管理学
    • 61 篇 管理科学与工程(可...
    • 61 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 41 篇 医学
    • 35 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 17 篇 法学
    • 13 篇 社会学
  • 8 篇 教育学
  • 6 篇 经济学
  • 6 篇 农学
  • 5 篇 军事学
  • 4 篇 艺术学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 33 篇 image segmentati...
  • 28 篇 pattern recognit...
  • 28 篇 feature extracti...
  • 19 篇 image processing
  • 14 篇 robustness
  • 13 篇 image recognitio...
  • 12 篇 support vector m...
  • 12 篇 target tracking
  • 12 篇 computer vision
  • 11 篇 image enhancemen...
  • 11 篇 machine learning
  • 11 篇 image reconstruc...
  • 11 篇 training
  • 10 篇 face recognition
  • 10 篇 semantics
  • 10 篇 image analysis
  • 10 篇 shape
  • 9 篇 object detection
  • 9 篇 convolution
  • 8 篇 deep learning

机构

  • 68 篇 institute of ima...
  • 40 篇 institute of ima...
  • 27 篇 hubei key labora...
  • 22 篇 national laborat...
  • 17 篇 state key labora...
  • 16 篇 institute of ima...
  • 15 篇 pattern recognit...
  • 14 篇 college of infor...
  • 12 篇 hubei key labora...
  • 12 篇 hubei engineerin...
  • 12 篇 college of compu...
  • 12 篇 knowledge engine...
  • 11 篇 university of ch...
  • 10 篇 institute of ima...
  • 10 篇 beijing national...
  • 10 篇 key laboratory o...
  • 9 篇 tsinghua univers...
  • 9 篇 institute of med...
  • 9 篇 institute of ima...
  • 9 篇 school of electr...

作者

  • 62 篇 yang jie
  • 41 篇 jie yang
  • 22 篇 huang xiaolin
  • 21 篇 zhang tianxu
  • 16 篇 zhou jie
  • 13 篇 ding mingyue
  • 13 篇 shen hong-bin
  • 12 篇 cai chao
  • 12 篇 yang yang
  • 11 篇 hong-bin shen
  • 11 篇 fan zhang
  • 10 篇 sun maosong
  • 10 篇 jinwen tian
  • 10 篇 tianxu zhang
  • 10 篇 lin yankai
  • 9 篇 li peng
  • 9 篇 jin rui-bo
  • 9 篇 he fan
  • 9 篇 xiangjian he
  • 9 篇 gong chen

语言

  • 603 篇 英文
  • 57 篇 其他
  • 30 篇 中文
检索条件"机构=Research Institute for Information Processing and Pattern Recognition"
689 条 记 录,以下是191-200 订阅
排序:
Multimodal foundation models are better simulators of the human brain
arXiv
收藏 引用
arXiv 2022年
作者: Lu, Haoyu Zhou, Qiongyi Fei, Nanyi Lu, Zhiwu Ding, Mingyu Wen, Jingyuan Du, Changde Zhao, Xin Sun, Hao He, Huiguang Wen, Ji-Rong Gaoling School of Artificial Intelligence Renmin University of China Beijing100872 China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing100872 China Research Center for Brain-inspired Intelligence National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100049 China School of Information Renmin University of China Beijing100872 China The University of Hong Kong Pokfulam Hong Kong Beijing Academy of Artificial Intelligence Beijing China
Multimodal learning, especially large-scale multimodal pre-training, has developed rapidly over the past few years and led to the greatest advances in artificial intelligence (AI). Despite its effectiveness, understan... 详细信息
来源: 评论
PC-GAIN: Pseudo-label Conditional Generative Adversarial Imputation Networks for Incomplete Data
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Yufeng Li, Dan Li, Xiang Yang, Min School of Mathematics and Information Sciences Yantai University Yantai China Research Center for Brain-inspired Intelligence National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China Software Engineering Institute East China Normal University Shanghai China
Datasets with missing values are very common in real world applications. GAIN, a recently proposed deep generative model for missing data imputation, has been proved to outperform many state-of-the-art methods. But GA... 详细信息
来源: 评论
CUGE: A Chinese Language Understanding and Generation Evaluation Benchmark
arXiv
收藏 引用
arXiv 2021年
作者: Yao, Yuan Dong, Qingxiu Guan, Jian Cao, Boxi Zhang, Zhengyan Xiao, Chaojun Wang, Xiaozhi Qi, Fanchao Bao, Junwei Nie, Jinran Zeng, Zheni Gu, Yuxian Zhou, Kun Huang, Xuancheng Li, Wenhao Ren, Shuhuai Lu, Jinliang Xu, Chengqiang Wang, Huadong Zeng, Guoyang Zhou, Zile Zhang, Jiajun Li, Juanzi Huang, Minlie Yan, Rui He, Xiaodong Wan, Xiaojun Zhao, Xin Sun, Xu Liu, Yang Liu, Zhiyuan Han, Xianpei Yang, Erhong Sui, Zhifang Sun, Maosong Department of Computer Science and Technology Tsinghua University China MOE Key Lab of Computational Linguistics School of EECS Peking University China Institute of Software Chinese Academy of Sciences China JD AI Research Beijing China School of Information Science Beijing Language and Culture University China School of Information Renmin University of China China National Laboratory of Pattern Recognition Institute of Automation CAS China Gaoling School of Artificial Intelligence Renmin University of China China Wangxuan Institute of Computer Technology Peking University Beijing Academy of Artificial Intelligence China
Realizing general-purpose language intelligence has been a longstanding goal for natural language processing, where standard evaluation benchmarks play a fundamental and guiding role. We argue that for general-purpose... 详细信息
来源: 评论
DAmageNet: A universal adversarial dataset
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Sizhe Huang, Xiaolin He, Zhengbao Sun, Chengjin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China
It is now well known that deep neural networks (DNNs) are vulnerable to adversarial attack. Adversarial samples are similar to the clean ones, but are able to cheat the attacked DNN to produce incorrect predictions in... 详细信息
来源: 评论
Refining visceral adipose tissue quantification: Influence of sex, age, and BMI on single slice estimation in 3D MRI of the German National Cohort
收藏 引用
Zeitschrift fur Medizinische Physik 2025年
作者: Haueise, Tobias Schick, Fritz Stefan, Norbert Grune, Elena von Itter, Marc-Nicolas Kauczor, Hans-Ulrich Nattenmüller, Johanna Norajitra, Tobias Nonnenmacher, Tobias Rospleszcz, Susanne Maier-Hein, Klaus H. Schlett, Christopher L. Weiss, Jakob B. Fischer, Beate Jöckel, Karl-Heinz Krist, Lilian Niendorf, Thoralf Peters, Annette Sedlmeier, Anja M. Willich, Stefan N. Bamberg, Fabian Machann, Jürgen Institute for Diabetes Research and Metabolic Diseases Helmholtz Munich at the University of Tübingen Tübingen Germany Tübingen Germany Section on Experimental Radiology Department of Diagnostic and Interventional Radiology University Hospital Tübingen Tübingen Germany Department of Internal Medicine Division of Diabetology Endocrinology and Nephrology University of Tübingen Tübingen Germany Department of Diagnostic and Interventional Radiology University Hospital Heidelberg Heidelberg Germany Institute of Radiology and Nuclear Medicine Hirslanden Klinik St. Anna Lucerne Switzerland Department of Diagnostic and Interventional Radiology Medical Center Faculty of Medicine University of Freiburg Freiburg Germany Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Pattern Analysis and Learning Group Department of Radiation Oncology University Hospital Heidelberg Heidelberg Germany Department of Epidemiology and Preventive Medicine University of Regensburg Germany Center for Translational Oncology University Hospital Regensburg Germany Regensburg Germany Berlin Germany Berlin Germany University Hospital Essen Essen Germany Department of Epidemiology Institute for Medical Information Processing Biometry and Epidemiology Ludwig-Maximilians-Universität Munich Germany Institute of Epidemiology Helmholtz Munich Environmental Health Center Neuherberg Germany Partner Site Munich Heart Alliance Munich Germany Partner Site Neuherberg Neuherberg Germany Institute of Social Medicine Epidemiology and Health Economics Charité – Universitätsmedizin Berlin Berlin Germany
Objectives: High prevalence of visceral obesity and its associated complications underscore the importance of accurately quantifying visceral adipose tissue (VAT) depots. While whole-body MRI offers comprehensive insi... 详细信息
来源: 评论
Current Progress and Challenges in Large-scale 3D Mitochondria Instance Segmentation
TechRxiv
收藏 引用
TechRxiv 2023年
作者: Franco-Barranco, Daniel Lin, Zudi Jang, Won-Dong Wang, Xueying Shen, Qijia Yin, Wenjie Fan, Yutian Li, Mingxing Chen, Chang Xiong, Zhiwei Xin, Rui Liu, Hao Chen, Huai Li, Zhili Zhao, Jie Chen, Xuejin Pape, Constantin Conrad, Ryan De Folter, Jozefus Nightingale, Luke Jones, Martin L. Liu, Yanling Ziaei, Dorsa Huschauer, Stephan Arganda-Carreras, Ignacio Pfister, Hanspeter Wei, Donglai The Department of Computer Science and Artificial Intelligence University of the Basque Country Donostia-San Sebastian Spain San Sebastian Spain Ikerbasque Basque Foundation for Science Bilbao Spain Biofisika Institute CSIC UPV/EHU Bilbao Spain Harvard University All-ston MA United States The Department of Molecular and Cellular Biology Harvard University CambridgeMA United States The Wellcome Centre for Integrative Neuroimaging FMRIB Nuffield Department of Clinical Neurosciences University of Oxford Oxford United Kingdom University of Science and Technology of China Anhui China The Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai China The National Engineering Laboratory for Brain-inspired Intelligence Technology and Application University of Science and Technology of China Anhui China The Georg-August University Goettingen Germany The Center for Molecular Microscopy Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda United States The Cancer Research Technology Program Frederick National Laboratory for Cancer Research Frederick United States The Francis Crick Institute London United Kingdom The Advanced Biomedical Computational Science Group Frederick National Laboratory for Cancer Research FrederickMD United States The Computer Science Department Boston College Chestnut Hill MA United States
In this paper, we present the results of the MitoEM challenge on mitochondria 3D instance segmentation from electron microscopy images, organized in conjunction with the IEEE-ISBI 2021 conference. Our benchmark datase... 详细信息
来源: 评论
Mem Brain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction
收藏 引用
Nano-Micro Letters 2018年 第1期10卷 12-19页
作者: Xi Yin Jing Yang Feng Xiao Yang Yang Hong-Bin Shen Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Department of Computer Science Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering
Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels,transporters, receptors. Because it is difficult to determinate t... 详细信息
来源: 评论
Web Page Classification Algorithm Based on Semi-Supervised Support Vector Machine  2
Web Page Classification Algorithm Based on Semi-Supervised S...
收藏 引用
2nd IEEE Advanced information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2018
作者: Huang, Wenqing You, Hui Zhejiang Sci-Tech University Institute of Computer Vision Image Processing and Pattern Recognition Acceptable School of Information Hangzhou China
Most web page classification algorithms are learning algorithms under the single-instance single-label framework. Multi-Instance Multi-Label learning is a new machine learning framework. MIMLSVM+ algorithm, using dege... 详细信息
来源: 评论
Moving objects elimination towards enhanced dynamic SLAM fusing LiDAR and mmW-radar
Moving objects elimination towards enhanced dynamic SLAM fus...
收藏 引用
IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)
作者: Xiangwei Dang Xingdong Liang Yanlei Li Zheng Rong National Key Laboratory of Microwave Imaging Technology Aerospace Information Research Institute Chinese Academy of Sciences School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China
Robust and accurate localization and mapping are essential for autonomous driving. The traditional SLAM methods generally work under the assumption that the environment is static, while in dynamic environment the perf... 详细信息
来源: 评论
MoEfication: Transformer Feed-forward Layers are Mixtures of Experts
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Zhengyan Lin, Yankai Liu, Zhiyuan Li, Peng Sun, Maosong Zhou, Jie Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua University Beijing China Beijing National Research Center for Information Science and Technology China Pattern Recognition Center WeChat AI Tencent Inc China International Innovation Center Tsinghua University Shanghai China Beijing Academy of Artificial Intelligence China Tsinghua University China Jiangsu Collaborative Innovation Center for Language Ability Xuzhou China
Recent work has shown that feed-forward networks (FFNs) in pre-trained Transformers are a key component, storing various linguistic and factual knowledge. However, the computational patterns of FFNs are still unclear.... 详细信息
来源: 评论