咨询与建议

限定检索结果

文献类型

  • 509 篇 会议
  • 260 篇 期刊文献
  • 17 册 图书

馆藏范围

  • 786 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 479 篇 工学
    • 322 篇 计算机科学与技术...
    • 277 篇 软件工程
    • 121 篇 信息与通信工程
    • 87 篇 生物工程
    • 69 篇 光学工程
    • 68 篇 机械工程
    • 64 篇 生物医学工程(可授...
    • 63 篇 控制科学与工程
    • 37 篇 电气工程
    • 29 篇 化学工程与技术
    • 28 篇 仪器科学与技术
    • 24 篇 电子科学与技术(可...
    • 12 篇 建筑学
    • 9 篇 土木工程
    • 9 篇 安全科学与工程
    • 8 篇 交通运输工程
  • 272 篇 理学
    • 108 篇 数学
    • 95 篇 生物学
    • 91 篇 物理学
    • 34 篇 化学
    • 31 篇 统计学(可授理学、...
    • 10 篇 系统科学
  • 126 篇 管理学
    • 83 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 18 篇 工商管理
  • 32 篇 医学
    • 30 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 21 篇 药学(可授医学、理...
  • 17 篇 艺术学
    • 17 篇 设计学(可授艺术学...
  • 14 篇 法学
    • 14 篇 社会学
  • 7 篇 经济学
  • 6 篇 教育学
  • 4 篇 文学
  • 1 篇 农学

主题

  • 100 篇 pattern recognit...
  • 92 篇 feature extracti...
  • 71 篇 image segmentati...
  • 70 篇 computer vision
  • 66 篇 handwriting reco...
  • 62 篇 character recogn...
  • 60 篇 support vector m...
  • 46 篇 training
  • 40 篇 optical characte...
  • 38 篇 shape
  • 32 篇 accuracy
  • 29 篇 histograms
  • 28 篇 databases
  • 26 篇 writing
  • 26 篇 testing
  • 21 篇 image edge detec...
  • 21 篇 text recognition
  • 19 篇 automation
  • 19 篇 image recognitio...
  • 19 篇 robustness

机构

  • 204 篇 computer vision ...
  • 43 篇 computer vision ...
  • 38 篇 university of ch...
  • 31 篇 national key lab...
  • 28 篇 faculty of compu...
  • 27 篇 shenzhen key lab...
  • 22 篇 national laborat...
  • 21 篇 siat branch shen...
  • 19 篇 shenzhen key lab...
  • 18 篇 sensetime resear...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 16 篇 computer vision ...
  • 12 篇 school of artifi...
  • 12 篇 computer vision ...
  • 12 篇 shanghai artific...
  • 12 篇 indian statistic...
  • 11 篇 shanghai ai labo...
  • 10 篇 school of comput...
  • 9 篇 center for resea...

作者

  • 108 篇 umapada pal
  • 100 篇 pal umapada
  • 41 篇 qiao yu
  • 38 篇 b.b. chaudhuri
  • 30 篇 michael blumenst...
  • 30 篇 palaiahnakote sh...
  • 28 篇 blumenstein mich...
  • 26 篇 shivakumara pala...
  • 23 篇 chaudhuri b.b.
  • 22 篇 u. pal
  • 17 篇 maier andreas
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 lu tong
  • 16 篇 chanda sukalpa
  • 15 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 p. nagabhushan
  • 12 篇 ujjwal bhattacha...
  • 12 篇 garain utpal

语言

  • 733 篇 英文
  • 50 篇 其他
  • 3 篇 中文
检索条件"机构=Research Institute of Computer Vision and Pattern Recognition"
786 条 记 录,以下是111-120 订阅
排序:
Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution Network
arXiv
收藏 引用
arXiv 2022年
作者: Tomar, Nikhil Kumar Srivastava, Abhishek Bagci, Ulas Jha, Debesh School of Informatics and Computer Science Indira Gandhi National Open University India Computer Vision and Pattern Recognition Unit Indian Statistical Institute India Machine and Hybrid Intelligence Lab Department of Radiology Feinberg School of Medicine Northwestern University United States
The detection and removal of precancerous polyps through colonoscopy is the primary technique for the prevention of colorectal cancer worldwide. However, the miss rate of colorectal polyp varies significantly among th... 详细信息
来源: 评论
An Empirical Study of Graph Contrastive Learning  35
An Empirical Study of Graph Contrastive Learning
收藏 引用
35th Conference on Neural Information Processing Systems - Track on Datasets and Benchmarks, NeurIPS Datasets and Benchmarks 2021
作者: Zhu, Yanqiao Xu, Yichen Liu, Qiang Wu, Shu Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China School of Computer Science Beijing University of Posts and Telecommunications China
Graph Contrastive Learning (GCL) establishes a new paradigm for learning graph representations without human annotations. Although remarkable progress has been witnessed recently, the success behind GCL is still left ... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and pattern recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
Unsupervised detection of small hyperreflective features in ultrahigh resolution optical coherence tomography
arXiv
收藏 引用
arXiv 2023年
作者: Reimann, Marcel Won, Jungeun Takahashi, Hiroyuki Yaghy, Antonio Hwang, Yunchan Ploner, Stefan Lin, Junhong Girgis, Jessica Lam, Kenneth Chen, Siyu Waheed, Nadia K. Maier, Andreas Fujimoto, James G. Department of Electrical Engineering and Computer Science Research Laboratory of Electronics Massachusetts Institute of Technology United States Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany New England Eye Center Tufts Medical Center United States
Recent advances in optical coherence tomography such as the development of high speed ultrahigh resolution scanners and corresponding signal processing techniques may reveal new potential biomarkers in retinal disease... 详细信息
来源: 评论
LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Boyu Yue, Zhengrong Chen, Siran Wang, Zikang Liu, Yang Li, Peng Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Tsinghua University Beijing China Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua University Beijing China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine... 详细信息
来源: 评论
Low-Resolution Action recognition for Tiny Actions Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Boyu Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often reco... 详细信息
来源: 评论
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
AGA-GAN: Attribute guided attention generative adversarial network with U-net for face hallucination
arXiv
收藏 引用
arXiv 2021年
作者: Srivastava, Abhishek Chanda, Sukalpa Pal, Umapada Computer Vision and Pattern Recognition Unit Indian Statistical Institute West Bengal Kolkata700108 India Department of Computer Science and Communication Østfold University College Halden Norway
The performance of facial super-resolution methods relies on their ability to recover facial structures and salient features effectively. Even though the convolutional neural network and generative adversarial network... 详细信息
来源: 评论
DE3-BERT: Distance-Enhanced Early Exiting for BERT based on Prototypical Networks
arXiv
收藏 引用
arXiv 2024年
作者: He, Jianing Zhang, Qi Ding, Weiping Miao, Duoqian Zhao, Jun Hu, Liang Cao, Longbing The School of Computer Science Tongji University Shanghai201804 China The School of Information Science and Technology Nantong University Nantong226019 China The National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China The DataX Research Centre School of Computing Macquarie University SydneyNSW2109 Australia
Early exiting has demonstrated its effectiveness in accelerating the inference of pre-trained language models like BERT by dynamically adjusting the number of layers executed. However, most existing early exiting meth... 详细信息
来源: 评论
The Devil is in the Conflict: Disentangled Information Graph Neural Networks for Fraud Detection
The Devil is in the Conflict: Disentangled Information Graph...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Zhixun Li Dingshuo Chen Qiang Liu Shu Wu School of Computer Science and Technology Beijing Institute of Technology Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences School of Artificial Intelligence University of Chinese Academy of Sciences
Graph-based fraud detection has heretofore received considerable attention. Owning to the great success of Graph Neural Networks (GNNs), many approaches adopting GNNs for fraud detection has been gaining momentum. How... 详细信息
来源: 评论