咨询与建议

限定检索结果

文献类型

  • 509 篇 会议
  • 260 篇 期刊文献
  • 17 册 图书

馆藏范围

  • 786 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 479 篇 工学
    • 322 篇 计算机科学与技术...
    • 277 篇 软件工程
    • 121 篇 信息与通信工程
    • 87 篇 生物工程
    • 69 篇 光学工程
    • 68 篇 机械工程
    • 64 篇 生物医学工程(可授...
    • 63 篇 控制科学与工程
    • 37 篇 电气工程
    • 29 篇 化学工程与技术
    • 28 篇 仪器科学与技术
    • 24 篇 电子科学与技术(可...
    • 12 篇 建筑学
    • 9 篇 土木工程
    • 9 篇 安全科学与工程
    • 8 篇 交通运输工程
  • 272 篇 理学
    • 108 篇 数学
    • 95 篇 生物学
    • 91 篇 物理学
    • 34 篇 化学
    • 31 篇 统计学(可授理学、...
    • 10 篇 系统科学
  • 126 篇 管理学
    • 83 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 18 篇 工商管理
  • 32 篇 医学
    • 30 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 21 篇 药学(可授医学、理...
  • 17 篇 艺术学
    • 17 篇 设计学(可授艺术学...
  • 14 篇 法学
    • 14 篇 社会学
  • 7 篇 经济学
  • 6 篇 教育学
  • 4 篇 文学
  • 1 篇 农学

主题

  • 100 篇 pattern recognit...
  • 92 篇 feature extracti...
  • 71 篇 image segmentati...
  • 70 篇 computer vision
  • 66 篇 handwriting reco...
  • 62 篇 character recogn...
  • 60 篇 support vector m...
  • 46 篇 training
  • 40 篇 optical characte...
  • 38 篇 shape
  • 32 篇 accuracy
  • 29 篇 histograms
  • 28 篇 databases
  • 26 篇 writing
  • 26 篇 testing
  • 21 篇 image edge detec...
  • 21 篇 text recognition
  • 19 篇 automation
  • 19 篇 image recognitio...
  • 19 篇 robustness

机构

  • 204 篇 computer vision ...
  • 43 篇 computer vision ...
  • 38 篇 university of ch...
  • 31 篇 national key lab...
  • 28 篇 faculty of compu...
  • 27 篇 shenzhen key lab...
  • 22 篇 national laborat...
  • 21 篇 siat branch shen...
  • 19 篇 shenzhen key lab...
  • 18 篇 sensetime resear...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 16 篇 computer vision ...
  • 12 篇 school of artifi...
  • 12 篇 computer vision ...
  • 12 篇 shanghai artific...
  • 12 篇 indian statistic...
  • 11 篇 shanghai ai labo...
  • 10 篇 school of comput...
  • 9 篇 center for resea...

作者

  • 108 篇 umapada pal
  • 101 篇 pal umapada
  • 42 篇 qiao yu
  • 38 篇 b.b. chaudhuri
  • 30 篇 michael blumenst...
  • 30 篇 palaiahnakote sh...
  • 28 篇 blumenstein mich...
  • 27 篇 shivakumara pala...
  • 23 篇 chaudhuri b.b.
  • 22 篇 u. pal
  • 18 篇 lu tong
  • 17 篇 maier andreas
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 16 篇 chanda sukalpa
  • 15 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 p. nagabhushan
  • 13 篇 dong chao
  • 12 篇 ujjwal bhattacha...

语言

  • 733 篇 英文
  • 50 篇 其他
  • 3 篇 中文
检索条件"机构=Research Institute of Computer Vision and Pattern Recognition"
786 条 记 录,以下是181-190 订阅
排序:
Feature refinement: An expression-specific feature learning and fusion method for micro-expression recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Ling Mao, Qirong Huang, Xiaohua Zhang, Feifei Zhang, Zhihong School of Computer Science and Communication Engineering Jiangsu University ZhenjiangJiangsu212013 China School of Computer Engineering Nanjing Institute of Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Xiamen University Xiamen China Center for Machine Vision and Signal Analysis University of Oulu Finland
Micro-Expression recognition has become challenging, as it is extremely difficult to extract the subtle facial changes of micro-expressions. Recently, several approaches proposed several expression-shared features alg... 详细信息
来源: 评论
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
LEDNet: Deep Network for Single Image Haze Removal  2018
LEDNet: Deep Network for Single Image Haze Removal
收藏 引用
Proceedings of the 11th Indian Conference on computer vision, Graphics and Image Processing
作者: Akshay Dudhane Subrahmanyam Murala Abhinav Dhall Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar India Learning Affect and Semantic Image Analysis Group Indian Institute of Technology Ropar India
Haze during the bad weather, degrades the visibility of the scene drastically. Degradation of scene visibility varies with respect to the transmission coefficient/map (Tc) of the scene. Estimation of accurate Tc is ke... 详细信息
来源: 评论
SynFacePAD 2023: Competition on Face Presentation Attack Detection Based on Privacy-aware Synthetic Training Data
SynFacePAD 2023: Competition on Face Presentation Attack Det...
收藏 引用
IEEE International Joint Conference on Biometrics (IJCB)
作者: Meiling Fang Marco Huber Julian Fierrez Raghavendra Ramachandra Naser Damer Alhasan Alkhaddour Maksim Kasantcev Vasiliy Pryadchenko Ziyuan Yang Huijie Huangfu Yingyu Chen Yi Zhang Yuchen Pan Junjun Jiang Xianming Liu Xianyun Sun Caiyong Wang Xingyu Liu Zhaohua Chang Guangzhe Zhao Juan Tapia Lazaro Gonzalez-Soler Carlos Aravena Daniel Schulz Fraunhofer Institute for Computer Graphics Research IGD Darmstadt Germany Department of Computer Science TU Darmstadt Darmstadt Germany Biometrics and Data Pattern Analytics Lab Universidad Autonoma de Madrid Spain Norwegian University of Science and Technology (NTNU) Norway ID R&D Inc New York US School of Cyber Science and Engineering Sichuan University Chengdu China School of Computer Science and Technology Harbin Institute of Technology Harbin China School of Electrical and Information Engineering Beijing University of Civil Engineering and Architecture China Biometrics and Security Research Group Hochschule Darmstadt Darmstadt Germany I+D Vision Center Santiago Chile
This paper presents a summary of the Competition on Face Presentation Attack Detection Based on Privacy-aware Synthetic Training Data (SynFacePAD 2023) held at the 2023 International Joint Conference on Biometrics (IJ...
来源: 评论
68 landmarks are efficient for 3D face alignment: What about more? 3D face alignment method applied to face recognition
TechRxiv
收藏 引用
TechRxiv 2021年
作者: Jabberi, Marwa Wali, Ali Chaudhuri, Bidyut Baran Alimi, Adel M. University of Sousse ISITCom Sousse4011 Tunisia BP 1173 Sfax3038 Tunisia Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India Department of Electrical and Electronic Engineering Science Faculty of Engineering and the Built Environment University of Johannesburg South Africa
This paper proposes a 3D face alignment of 2D face images in the wild with noisy landmarks where the objective is to recognize individuals from their single profile image. We first proceed by extracting more than 68 l... 详细信息
来源: 评论
Self-slimmed vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论
Investigate indistinguishable points in semantic segmentation of 3D point cloud
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Mingye Zhou, Zhipeng Zhang, Junhao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China Shanghai AI Lab Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
This paper investigates the indistinguishable points (difficult to predict label) in semantic segmentation for large-scale 3D point clouds. The indistinguishable points consist of those located in complex boundary, po... 详细信息
来源: 评论
Landmark-RxR: solving vision-and-language navigation with fine-grained alignment supervision  21
Landmark-RxR: solving vision-and-language navigation with fi...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Keji He Yan Huang Qi Wu Jianhua Yang Dong An Shuanglin Sima Liang Wang Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences and School of Artificial Intelligence University of Chinese Academy of Sciences School of Computer Science University of Adelaide School of Artificial Intelligence Beijing University of Posts and Telecommunications Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences and School of Future Technology University of Chinese Academy of Sciences Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences and School of Artificial Intelligence University of Chinese Academy of Sciences and Center for Excellence in Brain Science and Intelligence Technology (CEBSIT) and Chinese Academy of Sciences Artificial Intelligence Research (CAS-AIR)
In vision-and-Language Navigation (VLN) task, an agent is asked to navigate inside 3D indoor environments following given instructions. Cross-modal alignment is one of the most critical challenges in VLN because the p...
来源: 评论
MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Srivastava, Abhishek Jha, Debesh Chanda, Sukalpa Pal, Umapada Johansen, Håvard D. Johansen, Dag Riegler, Michael A. Ali, Sharib Halvorsen, Pål Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India SimulaMet Oslo Norway UiT The Arctic University of Norway Tromsø Norway Østfold University College Halden Norway Indian Statistical Institute Kolkata India The Department of Engineering Science University of Oxford Oxford NIHR Biomedical Research Centre Oxford United Kingdom Oslo Metropolitan University Oslo Norway
Methods based on convolutional neural networks have improved the performance of biomedical image segmentation However, most of these methods cannot efficiently segment objects of variable sizes and train on small and ... 详细信息
来源: 评论
Structure Function Based Transform Features for Behavior-Oriented Social Media Image Classification  5th
Structure Function Based Transform Features for Behavior-Ori...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Krishnani, Divya Shivakumara, Palaiahnakote Lu, Tong Pal, Umapada Ramachandra, Raghavendra International Institute of Information Technology Naya Raipur Naya RaipurChhattisgarh India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Information Technology and Electrical Engineering Norwegian University of Science and Technology Trondheim Norway
Social media has become an essential part of people to reflect their day to day activities including emotions, feelings, threatening and so on. This paper presents a new method for the automatic classification of beha... 详细信息
来源: 评论